max.py 3.26 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
from .scatter import scatter
from .utils import gen_filled_tensor, gen_output


def scatter_max_(output, index, input, dim=0):
rusty1s's avatar
rusty1s committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
    r"""Maximizes all values from the :attr:`input` tensor into :attr:`output`
    at the indices specified in the :attr:`index` tensor along an given axis
    :attr:`dim`. If multiple indices reference the same location, their
    **contributions maximize** (`cf.` :meth:`~torch_scatter.scatter_add_`).
    The second return value is the index location in :attr:`input` of each
    maximum value found (argmax).

    For one-dimensional tensors, the operation computes

    .. math::
        \mathrm{output}_i = \max(\mathrm{output}_i, \max_j(\mathrm{input}_j))

    where max is over :math:`j` such that :math:`\mathrm{index}_j = i`.

    Args:
        output (Tensor): The destination tensor
        index (LongTensor): The indices of elements to scatter
        input (Tensor): The source tensor
        dim (int, optional): The axis along which to index
rusty1s's avatar
rusty1s committed
25
26

    :rtype: (:class:`Tensor`, :class:`LongTensor`)
rusty1s's avatar
rusty1s committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

    .. testsetup::

        import torch

    .. testcode::

        from torch_scatter import scatter_max_
        input =     torch.Tensor([[2, 0, 1, 4, 3], [0, 2, 1, 3, 4]])
        index = torch.LongTensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
        output = torch.zeros(2, 6)
        output = scatter_max_(output, index, input, dim=1)
        print(output)

    .. testoutput::

       (
        0  0  4  3  2  0
        2  4  3  0  0  0
       [torch.FloatTensor of size 2x6]
       ,
       -1 -1  3  4  0  1
        1  4  3 -1 -1 -1
       [torch.LongTensor of size 2x6]
       )
rusty1s's avatar
rusty1s committed
52
53
54
55
56
    """
    arg_output = gen_filled_tensor(index, output.size(), fill_value=-1)
    return scatter('max', dim, output, index, input, arg_output)


rusty1s's avatar
rename  
rusty1s committed
57
def scatter_max(index, input, dim=0, size=None, fill_value=0):
rusty1s's avatar
rusty1s committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    r"""Maximizes all values from the :attr:`input` tensor at the indices
    specified in the :attr:`index` tensor along an given axis :attr:`dim`
    (`cf.` :meth:`~torch_scatter.scatter_max_` and
    :meth:`~torch_scatter.scatter_add`).

    For one-dimensional tensors, the operation computes

    .. math::
        \mathrm{output}_i = \max(\mathrm{fill\_value},
        \max_j(\mathrm{input}_j))

    where max is over :math:`j` such that :math:`\mathrm{index}_j = i`.

    Args:
        index (LongTensor): The indices of elements to scatter
        input (Tensor): The source tensor
        dim (int, optional): The axis along which to index
        size (int, optional): Output size at dimension :attr:`dim`
        fill_value (int, optional): Initial filling of output tensor

    :rtype: (:class:`Tensor`, :class:`LongTensor`)

    .. testsetup::

        import torch

    .. testcode::

        from torch_scatter import scatter_max
        input =     torch.Tensor([[2, 0, 1, 4, 3], [0, 2, 1, 3, 4]])
        index = torch.LongTensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
        output = scatter_max(index, input, dim=1)
        print(output)

    .. testoutput::

       (
        0  0  4  3  2  0
        2  4  3  0  0  0
       [torch.FloatTensor of size 2x6]
       ,
       -1 -1  3  4  0  1
        1  4  3 -1 -1 -1
       [torch.LongTensor of size 2x6]
       )
    """
rusty1s's avatar
rename  
rusty1s committed
104
    output = gen_output(index, input, dim, size, fill_value)
rusty1s's avatar
rusty1s committed
105
    return scatter_max_(output, index, input, dim)