test_segment.py 2.24 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
import time
rusty1s's avatar
rusty1s committed
2
3
4
5
from itertools import product

import pytest
import torch
rusty1s's avatar
rusty1s committed
6
7
from torch_scatter import segment_add, scatter_add
from torch_scatter.segment import segment_add2
rusty1s's avatar
rusty1s committed
8
9
10
11
12
13
14
15
16
17

from .utils import tensor

dtypes = [torch.float]
devices = [torch.device('cuda')]


@pytest.mark.parametrize('dtype,device', product(dtypes, devices))
def test_forward(dtype, device):
    src = tensor([1, 2, 3, 4, 5, 6], dtype, device)
rusty1s's avatar
rusty1s committed
18
    index = tensor([0, 0, 1, 1, 1, 3], torch.long, device)
rusty1s's avatar
rusty1s committed
19
20
    out = segment_add(src, index, dim=0)
    print('Thrust', out)
rusty1s's avatar
rusty1s committed
21

rusty1s's avatar
rusty1s committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

@pytest.mark.parametrize('dtype,device', product(dtypes, devices))
def test_forward2(dtype, device):
    src = tensor([1, 2, 3, 4, 5, 6], dtype, device)
    # indptr = tensor([0, 2, 5, 5, 6], torch.long, device)

    indptr = tensor([[0, 2, 5, 5, 6]], torch.long, device)

    out = segment_add2(src, indptr, dim=0)
    print('My', out)


@pytest.mark.parametrize('dtype,device', product(dtypes, devices))
def test_benchmark(dtype, device):
    from torch_geometric.datasets import Planetoid, Reddit  # noqa
    data = Planetoid('/tmp/Cora', 'Cora')[0].to(device)
    # data = Planetoid('/tmp/PubMed', 'PubMed')[0].to(device)
    data = Reddit('/tmp/Reddit')[0].to(device)
    row, col = data.edge_index
    x = torch.randn(data.num_edges, device=device)
    print(row.size(0) / data.num_nodes)

    # Warmup
    for _ in range(10):
        torch.randn(100, 100, device=device).sum()

    torch.cuda.synchronize()
    t = time.perf_counter()
    for _ in range(100):
        out1 = scatter_add(x, row, dim=0, dim_size=data.num_nodes)
    torch.cuda.synchronize()
    print(time.perf_counter() - t)

    torch.cuda.synchronize()

    t = time.perf_counter()
    for _ in range(100):
        out2 = segment_add(x, row, dim=0, dim_size=data.num_nodes)
    torch.cuda.synchronize()
    print(time.perf_counter() - t)

    assert torch.allclose(out1, out2, atol=1e-2)

    rowcount = segment_add(torch.ones_like(row), row)
    rowptr = torch.cat([rowcount.new_zeros(1), rowcount.cumsum(0)], dim=0)
    torch.cuda.synchronize()

    torch.cuda.synchronize()
    t = time.perf_counter()
    for _ in range(100):
        out3 = segment_add2(x, rowptr, dim=0)
    torch.cuda.synchronize()
    print(time.perf_counter() - t)

    assert torch.allclose(out1, out3, atol=1e-2)