PKG-INFO 8.23 KB
Newer Older
quyuanhao123's avatar
quyuanhao123 committed
1
2
Metadata-Version: 2.1
Name: torch-scatter
limm's avatar
limm committed
3
Version: 2.1.2
quyuanhao123's avatar
quyuanhao123 committed
4
5
6
7
Summary: PyTorch Extension Library of Optimized Scatter Operations
Home-page: https://github.com/rusty1s/pytorch_scatter
Author: Matthias Fey
Author-email: matthias.fey@tu-dortmund.de
limm's avatar
limm committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
License: UNKNOWN
Download-URL: https://github.com/rusty1s/pytorch_scatter/archive/2.1.2.tar.gz
Description: [pypi-image]: https://badge.fury.io/py/torch-scatter.svg
        [pypi-url]: https://pypi.python.org/pypi/torch-scatter
        [testing-image]: https://github.com/rusty1s/pytorch_scatter/actions/workflows/testing.yml/badge.svg
        [testing-url]: https://github.com/rusty1s/pytorch_scatter/actions/workflows/testing.yml
        [linting-image]: https://github.com/rusty1s/pytorch_scatter/actions/workflows/linting.yml/badge.svg
        [linting-url]: https://github.com/rusty1s/pytorch_scatter/actions/workflows/linting.yml
        [docs-image]: https://readthedocs.org/projects/pytorch-scatter/badge/?version=latest
        [docs-url]: https://pytorch-scatter.readthedocs.io/en/latest/?badge=latest
        [coverage-image]: https://codecov.io/gh/rusty1s/pytorch_scatter/branch/master/graph/badge.svg
        [coverage-url]: https://codecov.io/github/rusty1s/pytorch_scatter?branch=master
        
        # PyTorch Scatter
        
        [![PyPI Version][pypi-image]][pypi-url]
        [![Testing Status][testing-image]][testing-url]
        [![Linting Status][linting-image]][linting-url]
        [![Docs Status][docs-image]][docs-url]
        [![Code Coverage][coverage-image]][coverage-url]
        
        <p align="center">
          <img width="50%" src="https://raw.githubusercontent.com/rusty1s/pytorch_scatter/master/docs/source/_figures/add.svg?sanitize=true" />
        </p>
        
        --------------------------------------------------------------------------------
        
        **[Documentation](https://pytorch-scatter.readthedocs.io)**
        
        This package consists of a small extension library of highly optimized sparse update (scatter and segment) operations for the use in [PyTorch](http://pytorch.org/), which are missing in the main package.
        Scatter and segment operations can be roughly described as reduce operations based on a given "group-index" tensor.
        Segment operations require the "group-index" tensor to be sorted, whereas scatter operations are not subject to these requirements.
        
        The package consists of the following operations with reduction types `"sum"|"mean"|"min"|"max"`:
        
        * [**scatter**](https://pytorch-scatter.readthedocs.io/en/latest/functions/scatter.html) based on arbitrary indices
        * [**segment_coo**](https://pytorch-scatter.readthedocs.io/en/latest/functions/segment_coo.html) based on sorted indices
        * [**segment_csr**](https://pytorch-scatter.readthedocs.io/en/latest/functions/segment_csr.html) based on compressed indices via pointers
        
        In addition, we provide the following **composite functions** which make use of `scatter_*` operations under the hood: `scatter_std`, `scatter_logsumexp`, `scatter_softmax` and `scatter_log_softmax`.
        
        All included operations are broadcastable, work on varying data types, are implemented both for CPU and GPU with corresponding backward implementations, and are fully traceable.
        
        ## Installation
        
        ### Anaconda
        
        **Update:** You can now install `pytorch-scatter` via [Anaconda](https://anaconda.org/pyg/pytorch-scatter) for all major OS/PyTorch/CUDA combinations 🤗
        Given that you have [`pytorch >= 1.8.0` installed](https://pytorch.org/get-started/locally/), simply run
        
        ```
        conda install pytorch-scatter -c pyg
        ```
        
        ### Binaries
        
        We alternatively provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl).
        
        #### PyTorch 2.2
        
        To install the binaries for PyTorch 2.2.0, simply run
        
        ```
        pip install torch-scatter -f https://data.pyg.org/whl/torch-2.2.0+${CUDA}.html
        ```
        
        where `${CUDA}` should be replaced by either `cpu`, `cu118`, or `cu121` depending on your PyTorch installation.
        
        |             | `cpu` | `cu118` | `cu121` |
        |-------------|-------|---------|---------|
        | **Linux**   | ✅    | ✅      | ✅      |
        | **Windows** | ✅    | ✅      | ✅      |
        | **macOS**   | ✅    |         |         |
        
        #### PyTorch 2.1
        
        To install the binaries for PyTorch 2.1.0, simply run
        
        ```
        pip install torch-scatter -f https://data.pyg.org/whl/torch-2.1.0+${CUDA}.html
        ```
        
        where `${CUDA}` should be replaced by either `cpu`, `cu118`, or `cu121` depending on your PyTorch installation.
        
        |             | `cpu` | `cu118` | `cu121` |
        |-------------|-------|---------|---------|
        | **Linux**   | ✅    | ✅      | ✅      |
        | **Windows** | ✅    | ✅      | ✅      |
        | **macOS**   | ✅    |         |         |
        
        **Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1, PyTorch 1.9.0, PyTorch 1.10.0/1.10.1/1.10.2, PyTorch 1.11.0, PyTorch 1.12.0/1.12.1, PyTorch 1.13.0/1.13.1, and PyTorch 2.0.0 (following the same procedure).
        For older versions, you need to explicitly specify the latest supported version number or install via `pip install --no-index` in order to prevent a manual installation from source.
        You can look up the latest supported version number [here](https://data.pyg.org/whl).
        
        ### From source
        
        Ensure that at least PyTorch 1.4.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*:
        
        ```
        $ python -c "import torch; print(torch.__version__)"
        >>> 1.4.0
        
        $ echo $PATH
        >>> /usr/local/cuda/bin:...
        
        $ echo $CPATH
        >>> /usr/local/cuda/include:...
        ```
        
        Then run:
        
        ```
        pip install torch-scatter
        ```
        
        When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail.
        In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*:
        
        ```
        export TORCH_CUDA_ARCH_LIST = "6.0 6.1 7.2+PTX 7.5+PTX"
        ```
        
        ## Example
        
        ```py
        import torch
        from torch_scatter import scatter_max
        
        src = torch.tensor([[2, 0, 1, 4, 3], [0, 2, 1, 3, 4]])
        index = torch.tensor([[4, 5, 4, 2, 3], [0, 0, 2, 2, 1]])
        
        out, argmax = scatter_max(src, index, dim=-1)
        ```
        
        ```
        print(out)
        tensor([[0, 0, 4, 3, 2, 0],
                [2, 4, 3, 0, 0, 0]])
        
        print(argmax)
        tensor([[5, 5, 3, 4, 0, 1]
                [1, 4, 3, 5, 5, 5]])
        ```
        
        ## Running tests
        
        ```
        pytest
        ```
        
        ## C++ API
        
        `torch-scatter` also offers a C++ API that contains C++ equivalent of python models.
        For this, we need to add `TorchLib` to the `-DCMAKE_PREFIX_PATH` (*e.g.*, it may exists in `{CONDA}/lib/python{X.X}/site-packages/torch` if installed via `conda`):
        
        ```
        mkdir build
        cd build
        # Add -DWITH_CUDA=on support for CUDA support
        cmake -DCMAKE_PREFIX_PATH="..." ..
        make
        make install
        ```
        
quyuanhao123's avatar
quyuanhao123 committed
172
Keywords: pytorch,scatter,segment,gather
limm's avatar
limm committed
173
174
175
176
177
178
179
180
181
182
183
184
Platform: UNKNOWN
Classifier: Development Status :: 5 - Production/Stable
Classifier: License :: OSI Approved :: MIT License
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: Programming Language :: Python :: 3.12
Classifier: Programming Language :: Python :: 3 :: Only
Requires-Python: >=3.8
Description-Content-Type: text/markdown
quyuanhao123's avatar
quyuanhao123 committed
185
Provides-Extra: test