segment_csr_hip.cpp 8.64 KB
Newer Older
limm's avatar
limm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
// !!! This is a file automatically generated by hipify!!!
#include <ATen/dtk_macros.h>
#ifdef WITH_PYTHON
#include <Python.h>
#endif

#include <torch/script.h>

#include "cpu/segment_csr_cpu.h"
#include "macros.h"
#include "utils.h"

#ifdef WITH_CUDA
#include "hip/segment_csr_cuda.h"
#endif

#ifdef _WIN32
#ifdef WITH_PYTHON
#ifdef WITH_CUDA
PyMODINIT_FUNC PyInit__segment_csr_cuda(void) { return NULL; }
#else
PyMODINIT_FUNC PyInit__segment_csr_cpu(void) { return NULL; }
#endif
#endif
#endif

std::tuple<torch::Tensor, torch::optional<torch::Tensor>>
segment_csr_fw(torch::Tensor src, torch::Tensor indptr,
               torch::optional<torch::Tensor> optional_out,
               std::string reduce) {
  if (src.device().is_cuda()) {
#ifdef WITH_CUDA
    return segment_csr_cuda(src, indptr, optional_out, reduce);
#else
    AT_ERROR("Not compiled with CUDA support");
#endif
  } else {
    return segment_csr_cpu(src, indptr, optional_out, reduce);
  }
}

torch::Tensor gather_csr_fw(torch::Tensor src, torch::Tensor indptr,
                            torch::optional<torch::Tensor> optional_out) {
  if (src.device().is_cuda()) {
#ifdef WITH_CUDA
    return gather_csr_cuda(src, indptr, optional_out);
#else
    AT_ERROR("Not compiled with CUDA support");
#endif
  } else {
    return gather_csr_cpu(src, indptr, optional_out);
  }
}

using torch::autograd::AutogradContext;
using torch::autograd::Variable;
using torch::autograd::variable_list;

class SegmentSumCSR : public torch::autograd::Function<SegmentSumCSR> {
public:
  static variable_list forward(AutogradContext *ctx, Variable src,
                               Variable indptr,
                               torch::optional<Variable> optional_out) {
    ctx->saved_data["src_shape"] = src.sizes();
    auto out = std::get<0>(segment_csr_fw(src, indptr, optional_out, "sum"));
    ctx->save_for_backward({indptr});
    if (optional_out.has_value())
      ctx->mark_dirty({optional_out.value()});
    return {out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto indptr = saved[0];
    auto src_shape = list2vec(ctx->saved_data["src_shape"].toIntList());
    auto grad_in = torch::empty(src_shape, grad_out.options());
    gather_csr_fw(grad_out, indptr, grad_in);
    return {grad_in, Variable(), Variable()};
  }
};

class SegmentMeanCSR : public torch::autograd::Function<SegmentMeanCSR> {
public:
  static variable_list forward(AutogradContext *ctx, Variable src,
                               Variable indptr,
                               torch::optional<Variable> optional_out) {
    ctx->saved_data["src_shape"] = src.sizes();
    auto out = std::get<0>(segment_csr_fw(src, indptr, optional_out, "mean"));
    ctx->save_for_backward({indptr});
    if (optional_out.has_value())
      ctx->mark_dirty({optional_out.value()});
    return {out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto indptr = saved[0];
    auto src_shape = list2vec(ctx->saved_data["src_shape"].toIntList());
    auto grad_in = torch::empty(src_shape, grad_out.options());
    if (grad_in.numel() > 0) {
      gather_csr_fw(grad_out, indptr, grad_in);
      auto indptr1 = indptr.narrow(-1, 0, indptr.size(-1) - 1);
      auto indptr2 = indptr.narrow(-1, 1, indptr.size(-1) - 1);
      auto count = (indptr2 - indptr1).to(grad_in.options());
      count = gather_csr_fw(count, indptr, torch::nullopt);
      for (auto i = 0; i < grad_out.dim() - indptr.dim(); i++)
        count = count.unsqueeze(-1);
      grad_in.true_divide_(count);
    }
    return {grad_in, Variable(), Variable()};
  }
};

class SegmentMinCSR : public torch::autograd::Function<SegmentMinCSR> {
public:
  static variable_list forward(AutogradContext *ctx, Variable src,
                               Variable indptr,
                               torch::optional<Variable> optional_out) {
    ctx->saved_data["src_shape"] = src.sizes();
    auto result = segment_csr_fw(src, indptr, optional_out, "min");
    auto out = std::get<0>(result);
    auto arg_out = std::get<1>(result).value();
    ctx->save_for_backward({indptr, arg_out});
    ctx->mark_non_differentiable({arg_out});
    if (optional_out.has_value())
      ctx->mark_dirty({optional_out.value()});
    return {out, arg_out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto indptr = saved[0];
    auto arg_out = saved[1];
    auto src_shape = list2vec(ctx->saved_data["src_shape"].toIntList());
    src_shape[indptr.dim() - 1] += 1;
    auto grad_in = torch::zeros(src_shape, grad_out.options());
    grad_in.scatter_(indptr.dim() - 1, arg_out, grad_out);
    grad_in =
        grad_in.narrow(indptr.dim() - 1, 0, src_shape[indptr.dim() - 1] - 1);
    return {grad_in, Variable(), Variable()};
  }
};

class SegmentMaxCSR : public torch::autograd::Function<SegmentMaxCSR> {
public:
  static variable_list forward(AutogradContext *ctx, Variable src,
                               Variable indptr,
                               torch::optional<Variable> optional_out) {
    ctx->saved_data["src_shape"] = src.sizes();
    auto result = segment_csr_fw(src, indptr, optional_out, "max");
    auto out = std::get<0>(result);
    auto arg_out = std::get<1>(result).value();
    ctx->save_for_backward({indptr, arg_out});
    ctx->mark_non_differentiable({arg_out});
    if (optional_out.has_value())
      ctx->mark_dirty({optional_out.value()});
    return {out, arg_out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto indptr = saved[0];
    auto arg_out = saved[1];
    auto src_shape = list2vec(ctx->saved_data["src_shape"].toIntList());
    src_shape[indptr.dim() - 1] += 1;
    auto grad_in = torch::zeros(src_shape, grad_out.options());
    grad_in.scatter_(indptr.dim() - 1, arg_out, grad_out);
    grad_in =
        grad_in.narrow(indptr.dim() - 1, 0, src_shape[indptr.dim() - 1] - 1);
    return {grad_in, Variable(), Variable()};
  }
};

class GatherCSR : public torch::autograd::Function<GatherCSR> {
public:
  static variable_list forward(AutogradContext *ctx, Variable src,
                               Variable indptr,
                               torch::optional<Variable> optional_out) {
    ctx->saved_data["src_shape"] = src.sizes();
    auto out = gather_csr_fw(src, indptr, optional_out);
    ctx->save_for_backward({indptr});
    if (optional_out.has_value())
      ctx->mark_dirty({optional_out.value()});
    return {out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto indptr = saved[0];
    auto src_shape = list2vec(ctx->saved_data["src_shape"].toIntList());

    auto grad_in = torch::empty(src_shape, grad_out.options());
    segment_csr_fw(grad_out, indptr, grad_in, "sum");
    return {grad_in, Variable(), Variable()};
  }
};

SCATTER_API torch::Tensor
segment_sum_csr(torch::Tensor src, torch::Tensor indptr,
                torch::optional<torch::Tensor> optional_out) {
  return SegmentSumCSR::apply(src, indptr, optional_out)[0];
}

SCATTER_API torch::Tensor
segment_mean_csr(torch::Tensor src, torch::Tensor indptr,
                 torch::optional<torch::Tensor> optional_out) {
  return SegmentMeanCSR::apply(src, indptr, optional_out)[0];
}

SCATTER_API std::tuple<torch::Tensor, torch::Tensor>
segment_min_csr(torch::Tensor src, torch::Tensor indptr,
                torch::optional<torch::Tensor> optional_out) {
  auto result = SegmentMinCSR::apply(src, indptr, optional_out);
  return std::make_tuple(result[0], result[1]);
}

SCATTER_API std::tuple<torch::Tensor, torch::Tensor>
segment_max_csr(torch::Tensor src, torch::Tensor indptr,
                torch::optional<torch::Tensor> optional_out) {
  auto result = SegmentMaxCSR::apply(src, indptr, optional_out);
  return std::make_tuple(result[0], result[1]);
}

SCATTER_API torch::Tensor
gather_csr(torch::Tensor src, torch::Tensor indptr,
           torch::optional<torch::Tensor> optional_out) {
  return GatherCSR::apply(src, indptr, optional_out)[0];
}

static auto registry =
    torch::RegisterOperators()
        .op("torch_scatter::segment_sum_csr", &segment_sum_csr)
        .op("torch_scatter::segment_mean_csr", &segment_mean_csr)
        .op("torch_scatter::segment_min_csr", &segment_min_csr)
        .op("torch_scatter::segment_max_csr", &segment_max_csr)
        .op("torch_scatter::gather_csr", &gather_csr);