"graphbolt/vscode:/vscode.git/clone" did not exist on "528b041c51aae91afb7b40c031010f24cfcd3cf8"
segment_coo.cpp 9.06 KB
Newer Older
limm's avatar
limm committed
1
#ifdef WITH_PYTHON
quyuanhao123's avatar
quyuanhao123 committed
2
#include <Python.h>
limm's avatar
limm committed
3
4
#endif

quyuanhao123's avatar
quyuanhao123 committed
5
6
7
#include <torch/script.h>

#include "cpu/segment_coo_cpu.h"
limm's avatar
limm committed
8
#include "macros.h"
quyuanhao123's avatar
quyuanhao123 committed
9
10
#include "utils.h"

limm's avatar
limm committed
11
12
#ifdef WITH_CUDA
#include "cuda/segment_coo_cuda.h"
quyuanhao123's avatar
quyuanhao123 committed
13
14
15
#endif

#ifdef _WIN32
limm's avatar
limm committed
16
17
#ifdef WITH_PYTHON
#ifdef WITH_CUDA
quyuanhao123's avatar
quyuanhao123 committed
18
19
20
21
22
PyMODINIT_FUNC PyInit__segment_coo_cuda(void) { return NULL; }
#else
PyMODINIT_FUNC PyInit__segment_coo_cpu(void) { return NULL; }
#endif
#endif
limm's avatar
limm committed
23
#endif
quyuanhao123's avatar
quyuanhao123 committed
24
25
26
27
28
29

std::tuple<torch::Tensor, torch::optional<torch::Tensor>>
segment_coo_fw(torch::Tensor src, torch::Tensor index,
               torch::optional<torch::Tensor> optional_out,
               torch::optional<int64_t> dim_size, std::string reduce) {
  if (src.device().is_cuda()) {
limm's avatar
limm committed
30
#ifdef WITH_CUDA
quyuanhao123's avatar
quyuanhao123 committed
31
32
33
34
35
36
37
38
39
40
41
42
    return segment_coo_cuda(src, index, optional_out, dim_size, reduce);
#else
    AT_ERROR("Not compiled with CUDA support");
#endif
  } else {
    return segment_coo_cpu(src, index, optional_out, dim_size, reduce);
  }
}

torch::Tensor gather_coo_fw(torch::Tensor src, torch::Tensor index,
                            torch::optional<torch::Tensor> optional_out) {
  if (src.device().is_cuda()) {
limm's avatar
limm committed
43
#ifdef WITH_CUDA
quyuanhao123's avatar
quyuanhao123 committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    return gather_coo_cuda(src, index, optional_out);
#else
    AT_ERROR("Not compiled with CUDA support");
#endif
  } else {
    return gather_coo_cpu(src, index, optional_out);
  }
}

using torch::autograd::AutogradContext;
using torch::autograd::Variable;
using torch::autograd::variable_list;

class SegmentSumCOO : public torch::autograd::Function<SegmentSumCOO> {
public:
  static variable_list forward(AutogradContext *ctx, Variable src,
                               Variable index,
                               torch::optional<Variable> optional_out,
                               torch::optional<int64_t> dim_size) {
    ctx->saved_data["src_shape"] = src.sizes();
    auto result = segment_coo_fw(src, index, optional_out, dim_size, "sum");
    auto out = std::get<0>(result);
    ctx->save_for_backward({index});
    if (optional_out.has_value())
      ctx->mark_dirty({optional_out.value()});
    return {out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto index = saved[0];
    auto src_shape = list2vec(ctx->saved_data["src_shape"].toIntList());
    auto grad_in = torch::empty(src_shape, grad_out.options());
    gather_coo_fw(grad_out, index, grad_in);
    return {grad_in, Variable(), Variable(), Variable()};
  }
};

class SegmentMeanCOO : public torch::autograd::Function<SegmentMeanCOO> {
public:
  static variable_list forward(AutogradContext *ctx, Variable src,
                               Variable index,
                               torch::optional<Variable> optional_out,
                               torch::optional<int64_t> dim_size) {
    ctx->saved_data["src_shape"] = src.sizes();
    auto result = segment_coo_fw(src, index, optional_out, dim_size, "mean");
    auto out = std::get<0>(result);
    auto count = std::get<1>(result).value();
    ctx->save_for_backward({index, count});
    if (optional_out.has_value())
      ctx->mark_dirty({optional_out.value()});
    return {out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto index = saved[0];
    auto count = saved[1];
    auto src_shape = list2vec(ctx->saved_data["src_shape"].toIntList());
    auto grad_in = torch::empty(src_shape, grad_out.options());
    gather_coo_fw(grad_out, index, grad_in);
    count = gather_coo_fw(count, index, torch::nullopt);
    for (auto i = 0; i < grad_out.dim() - index.dim(); i++)
      count = count.unsqueeze(-1);
    grad_in.true_divide_(count);
    return {grad_in, Variable(), Variable(), Variable()};
  }
};

class SegmentMinCOO : public torch::autograd::Function<SegmentMinCOO> {
public:
  static variable_list forward(AutogradContext *ctx, Variable src,
                               Variable index,
                               torch::optional<Variable> optional_out,
                               torch::optional<int64_t> dim_size) {
    ctx->saved_data["src_shape"] = src.sizes();
    auto result = segment_coo_fw(src, index, optional_out, dim_size, "min");
    auto out = std::get<0>(result);
    auto arg_out = std::get<1>(result).value();
    ctx->save_for_backward({index, arg_out});
    ctx->mark_non_differentiable({arg_out});
    if (optional_out.has_value())
      ctx->mark_dirty({optional_out.value()});
    return {out, arg_out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto index = saved[0];
    auto arg_out = saved[1];
    auto src_shape = list2vec(ctx->saved_data["src_shape"].toIntList());
    src_shape[index.dim() - 1] += 1;
    auto grad_in = torch::zeros(src_shape, grad_out.options());
    grad_in.scatter_(index.dim() - 1, arg_out, grad_out);
    grad_in =
        grad_in.narrow(index.dim() - 1, 0, src_shape[index.dim() - 1] - 1);
    return {grad_in, Variable(), Variable(), Variable()};
  }
};

class SegmentMaxCOO : public torch::autograd::Function<SegmentMaxCOO> {
public:
  static variable_list forward(AutogradContext *ctx, Variable src,
                               Variable index,
                               torch::optional<Variable> optional_out,
                               torch::optional<int64_t> dim_size) {
    ctx->saved_data["src_shape"] = src.sizes();
    auto result = segment_coo_fw(src, index, optional_out, dim_size, "max");
    auto out = std::get<0>(result);
    auto arg_out = std::get<1>(result).value();
    ctx->save_for_backward({index, arg_out});
    ctx->mark_non_differentiable({arg_out});
    if (optional_out.has_value())
      ctx->mark_dirty({optional_out.value()});
    return {out, arg_out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto index = saved[0];
    auto arg_out = saved[1];
    auto src_shape = list2vec(ctx->saved_data["src_shape"].toIntList());
    src_shape[index.dim() - 1] += 1;
    auto grad_in = torch::zeros(src_shape, grad_out.options());
    grad_in.scatter_(index.dim() - 1, arg_out, grad_out);
    grad_in =
        grad_in.narrow(index.dim() - 1, 0, src_shape[index.dim() - 1] - 1);
    return {grad_in, Variable(), Variable(), Variable()};
  }
};

class GatherCOO : public torch::autograd::Function<GatherCOO> {
public:
  static variable_list forward(AutogradContext *ctx, Variable src,
                               Variable index,
                               torch::optional<Variable> optional_out) {
    ctx->saved_data["src_shape"] = src.sizes();
    auto out = gather_coo_fw(src, index, optional_out);
    ctx->save_for_backward({index});
    if (optional_out.has_value())
      ctx->mark_dirty({optional_out.value()});
    return {out};
  }

  static variable_list backward(AutogradContext *ctx, variable_list grad_outs) {
    auto grad_out = grad_outs[0];
    auto saved = ctx->get_saved_variables();
    auto index = saved[0];
    auto src_shape = list2vec(ctx->saved_data["src_shape"].toIntList());

    auto grad_in = torch::zeros(src_shape, grad_out.options());
    segment_coo_fw(grad_out, index, grad_in, torch::nullopt, "sum");
    return {grad_in, Variable(), Variable()};
  }
};

limm's avatar
limm committed
204
205
206
207
SCATTER_API torch::Tensor
segment_sum_coo(torch::Tensor src, torch::Tensor index,
                torch::optional<torch::Tensor> optional_out,
                torch::optional<int64_t> dim_size) {
quyuanhao123's avatar
quyuanhao123 committed
208
209
210
  return SegmentSumCOO::apply(src, index, optional_out, dim_size)[0];
}

limm's avatar
limm committed
211
212
213
214
SCATTER_API torch::Tensor
segment_mean_coo(torch::Tensor src, torch::Tensor index,
                 torch::optional<torch::Tensor> optional_out,
                 torch::optional<int64_t> dim_size) {
quyuanhao123's avatar
quyuanhao123 committed
215
216
217
  return SegmentMeanCOO::apply(src, index, optional_out, dim_size)[0];
}

limm's avatar
limm committed
218
SCATTER_API std::tuple<torch::Tensor, torch::Tensor>
quyuanhao123's avatar
quyuanhao123 committed
219
220
221
222
223
224
225
segment_min_coo(torch::Tensor src, torch::Tensor index,
                torch::optional<torch::Tensor> optional_out,
                torch::optional<int64_t> dim_size) {
  auto result = SegmentMinCOO::apply(src, index, optional_out, dim_size);
  return std::make_tuple(result[0], result[1]);
}

limm's avatar
limm committed
226
SCATTER_API std::tuple<torch::Tensor, torch::Tensor>
quyuanhao123's avatar
quyuanhao123 committed
227
228
229
230
231
232
233
segment_max_coo(torch::Tensor src, torch::Tensor index,
                torch::optional<torch::Tensor> optional_out,
                torch::optional<int64_t> dim_size) {
  auto result = SegmentMaxCOO::apply(src, index, optional_out, dim_size);
  return std::make_tuple(result[0], result[1]);
}

limm's avatar
limm committed
234
235
236
SCATTER_API torch::Tensor
gather_coo(torch::Tensor src, torch::Tensor index,
           torch::optional<torch::Tensor> optional_out) {
quyuanhao123's avatar
quyuanhao123 committed
237
238
239
240
241
242
243
244
245
246
  return GatherCOO::apply(src, index, optional_out)[0];
}

static auto registry =
    torch::RegisterOperators()
        .op("torch_scatter::segment_sum_coo", &segment_sum_coo)
        .op("torch_scatter::segment_mean_coo", &segment_mean_coo)
        .op("torch_scatter::segment_min_coo", &segment_min_coo)
        .op("torch_scatter::segment_max_coo", &segment_max_coo)
        .op("torch_scatter::gather_coo", &gather_coo);