"src/libtorchaudio/sox/utils.cpp" did not exist on "463a8b2c83653ce01698f542e2ff07f4947dce7e"
Commit 9a463332 authored by Mauro Bisson's avatar Mauro Bisson Committed by Thorsten Kurth
Browse files

Optimized BWD kernel with the same changes for FWD from commit 8cb399ee:

* Replaced PyTorch's slow permutation.
* Split kernel into general and specialized versions (for num_channel <= 8192)
* Enabled float4-based vectorized memory access, when possible.
* Added runtime dispatch logic for kernel specialization.

Aligned attention_fwd_cuda.cu with attention_bwd_cuda.cu in terms of naming conventions and kernel parameters.

Extracted shared host/device functions and declarations into a separate module:
* attention_utils.cuh
* attention_utils.cu
parent ab44ba59
// coding=utf-8
//
// SPDX-FileCopyrightText: Copyright (c) 2025 The torch-harmonics Authors. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "attention.cuh"
#include <ATen/cuda/detail/TensorInfo.cuh>
#include <ATen/cuda/detail/KernelUtils.h>
#include <ATen/cuda/detail/IndexUtils.cuh>
#include <ATen/cuda/CUDAUtils.h>
#include <cuda_runtime.h>
#include <cub/cub.cuh>
#include <limits>
#include "cudamacro.h"
#include "attention_utils.cuh"
#define THREADS (64)
#define TRANSP_WARPS_X_TILE_GENERIC (32)
#define TRANSP_WARPS_X_TILE_SM100 (4)
// BEGIN - CSR rows sorting kernels and functions
__global__ void set_rlen_rids_k(const int n,
const int64_t *__restrict__ offs,
int *__restrict__ rids,
int *__restrict__ rlen) {
const int nth = gridDim.x*blockDim.x;
const int tid = blockIdx.x*blockDim.x + threadIdx.x;
for(int i = tid; i < n; i += nth) {
rids[i] = i;
rlen[i] = offs[i+1]-offs[i];
}
return;
}
at::Tensor sortRows(int nlat_out, at::Tensor row_off, cudaStream_t stream) {
int64_t *_row_off_d = reinterpret_cast<int64_t *>(row_off.data_ptr());
auto options = torch::TensorOptions().dtype(torch::kInt32).device(row_off.device());
torch::Tensor rids_d = torch::empty({nlat_out}, options);
torch::Tensor rlen_d = torch::empty({nlat_out}, options);
int *_rids_d = reinterpret_cast<int *>(rids_d.data_ptr());
int *_rlen_d = reinterpret_cast<int *>(rlen_d.data_ptr());
const int grid = DIV_UP(nlat_out, THREADS);
const int block = THREADS;
set_rlen_rids_k<<<grid, block, 0, stream>>>(nlat_out,
_row_off_d,
_rids_d,
_rlen_d);
torch::Tensor rids_sort_d = torch::empty({nlat_out}, options);
torch::Tensor rlen_sort_d = torch::empty({nlat_out}, options);
int *_rids_sort_d = reinterpret_cast<int *>(rids_sort_d.data_ptr());
int *_rlen_sort_d = reinterpret_cast<int *>(rlen_sort_d.data_ptr());
size_t temp_storage_bytes = 0;
CHECK_CUDA(cub::DeviceRadixSort::SortPairsDescending(NULL, temp_storage_bytes,
_rlen_d, _rlen_sort_d,
_rids_d, _rids_sort_d,
nlat_out, 0, sizeof(*_rlen_d)*8, stream));
options = torch::TensorOptions().dtype(torch::kByte).device(row_off.device());
torch::Tensor temp_storage_d = torch::empty({int64_t(temp_storage_bytes)}, options);
void *_temp_storage_d = reinterpret_cast<void *>(temp_storage_d.data_ptr());
CHECK_CUDA(cub::DeviceRadixSort::SortPairsDescending(_temp_storage_d, temp_storage_bytes,
_rlen_d, _rlen_sort_d,
_rids_d, _rids_sort_d,
nlat_out, 0, sizeof(*_rlen_d)*8, stream));
return rids_sort_d;
}
// END - CSR rows sorting kernels and functions
// BEGIN - 4D tensor permutation kernels and functions
template<int BDIM_X,
int BDIM_Y,
typename VAL_T>
__global__
__launch_bounds__(BDIM_X*BDIM_Y)
void permute_to0231_k(const int nchn,
const int nlat,
const int nlon,
const torch::PackedTensorAccessor32<VAL_T, 4, torch::RestrictPtrTraits> src,
torch::PackedTensorAccessor32<VAL_T, 4, torch::RestrictPtrTraits> dst) {
static_assert(!(BDIM_X & (BDIM_X-1)));
static_assert(!(BDIM_Y & (BDIM_Y-1)));
static_assert(BDIM_X >= BDIM_Y);
__shared__ VAL_T sh[BDIM_X][BDIM_X+1];
const int tidx = threadIdx.x;
const int tidy = threadIdx.y;
const int coff = blockIdx.x*BDIM_X; // channel offset
const int woff = blockIdx.y*BDIM_X; // width offset
const int batch = blockIdx.z / nlat; // batch (same for all block)
const int h = blockIdx.z - (batch * nlat); // height (same for all block)
const int nchn_full = (nchn-coff) >= BDIM_X;
const int nlon_full = (nlon-woff) >= BDIM_X;
if (nchn_full && nlon_full) {
#pragma unroll
for(int j = 0; j < BDIM_X; j += BDIM_Y) {
sh[j+tidy][tidx] = src[batch][coff + j+tidy][h][woff+tidx];
}
__syncthreads();
#pragma unroll
for(int j = 0; j < BDIM_X; j += BDIM_Y) {
dst[batch][h][woff + j+tidy][coff+tidx] = sh[tidx][j+tidy];
}
} else {
if (woff+tidx < nlon) {
#pragma unroll
for(int j = 0; j < BDIM_X; j += BDIM_Y) {
sh[j+tidy][tidx] = (coff + j+tidy < nchn) ? src[batch][coff + j+tidy][h][woff+tidx] : 0.f;
}
}
__syncthreads();
if (coff+tidx < nchn) {
#pragma unroll
for(int j = 0; j < BDIM_X; j += BDIM_Y) {
if (woff + j+tidy < nlon) {
dst[batch][h][woff + j+tidy][coff+tidx] = sh[tidx][j+tidy];
}
}
}
}
return;
}
__global__ void empty_k() {}
static int getPtxver() {
cudaFuncAttributes attrs;
CHECK_CUDA(cudaFuncGetAttributes(&attrs, empty_k));
return attrs.ptxVersion*10;
}
at::Tensor permute_4D_floatT_to0231(at::Tensor src, cudaStream_t stream) {
dim3 block;
dim3 grid;
block.x = WARP_SIZE;
grid.x = DIV_UP(src.size(1), block.x);
grid.y = DIV_UP(src.size(3), block.x);
grid.z = src.size(2)*src.size(0);
assert(grid.y < 65536);
assert(grid.z < 65536);
auto options = torch::TensorOptions().dtype(torch::kFloat32).device(src.device());
torch::Tensor dst = torch::empty({src.size(0), src.size(2), src.size(3), src.size(1)}, options);
const int ptxv = getPtxver();
// to be further specialized for additional archs, if necessary
if (ptxv < 100) {
block.y = TRANSP_WARPS_X_TILE_GENERIC;
permute_to0231_k<WARP_SIZE, TRANSP_WARPS_X_TILE_GENERIC>
<<<grid, block, 0, stream>>>(src.size(1),
src.size(2),
src.size(3),
src.packed_accessor32<float, 4, torch::RestrictPtrTraits>(),
dst.packed_accessor32<float, 4, torch::RestrictPtrTraits>());
} else {
block.y = TRANSP_WARPS_X_TILE_SM100;
permute_to0231_k<WARP_SIZE, TRANSP_WARPS_X_TILE_SM100>
<<<grid, block, 0, stream>>>(src.size(1),
src.size(2),
src.size(3),
src.packed_accessor32<float, 4, torch::RestrictPtrTraits>(),
dst.packed_accessor32<float, 4, torch::RestrictPtrTraits>());
}
return dst;
}
template<int BDIM_X,
int BDIM_Y,
typename VAL_T>
__global__
__launch_bounds__(BDIM_X*BDIM_Y)
void permute_to0312_k(const int nchn,
const int nlat,
const int nlon,
const torch::PackedTensorAccessor32<VAL_T, 4, torch::RestrictPtrTraits> src,
torch::PackedTensorAccessor32<VAL_T, 4, torch::RestrictPtrTraits> dst) {
static_assert(!(BDIM_X & (BDIM_X-1)));
static_assert(!(BDIM_Y & (BDIM_Y-1)));
static_assert(BDIM_X >= BDIM_Y);
__shared__ VAL_T sh[BDIM_X][BDIM_X+1];
const int tidx = threadIdx.x;
const int tidy = threadIdx.y;
const int woff = blockIdx.x*BDIM_X; // width offset
const int coff = blockIdx.y*BDIM_X; // channel offset
const int batch = blockIdx.z / nlat; // batch (same for all block)
const int h = blockIdx.z - (batch * nlat); // height (same for all block)
const int nchn_full = (nchn-coff) >= BDIM_X;
const int nlon_full = (nlon-woff) >= BDIM_X;
if (nchn_full && nlon_full) {
#pragma unroll
for(int j = 0; j < BDIM_X; j += BDIM_Y) {
sh[j+tidy][tidx] = src[batch][h][woff + j+tidy][coff+tidx];
}
__syncthreads();
#pragma unroll
for(int j = 0; j < BDIM_X; j += BDIM_Y) {
dst[batch][coff + j+tidy][h][woff+tidx] = sh[tidx][j+tidy];
}
} else {
if (coff+tidx < nchn) {
#pragma unroll
for(int j = 0; j < BDIM_X; j += BDIM_Y) {
sh[j+tidy][tidx] = (woff + j+tidy < nlon) ? src[batch][h][woff + j+tidy][coff+tidx] : 0.f;
}
}
__syncthreads();
if (woff+tidx < nlon) {
#pragma unroll
for(int j = 0; j < BDIM_X; j += BDIM_Y) {
if (coff + j+tidy < nchn) {
dst[batch][coff + j+tidy][h][woff+tidx] = sh[tidx][j+tidy];;
}
}
}
}
return;
}
at::Tensor permute_4D_floatT_to0312(at::Tensor src, cudaStream_t stream) {
dim3 block;
dim3 grid;
block.x = WARP_SIZE;
grid.x = DIV_UP(src.size(2), block.x);
grid.y = DIV_UP(src.size(3), block.x);
grid.z = src.size(1)*src.size(0);
assert(grid.y < 65536);
assert(grid.z < 65536);
auto options = torch::TensorOptions().dtype(torch::kFloat32).device(src.device());
torch::Tensor dst = torch::empty({src.size(0), src.size(3), src.size(1), src.size(2)}, options);
const int ptxv = getPtxver();
// to be further specialized for additional archs, if necessary
if (ptxv < 100) {
block.y = TRANSP_WARPS_X_TILE_GENERIC;
permute_to0312_k<WARP_SIZE, TRANSP_WARPS_X_TILE_GENERIC>
<<<grid, block, 0, stream>>>(src.size(3),
src.size(1),
src.size(2),
src.packed_accessor32<float, 4, torch::RestrictPtrTraits>(),
dst.packed_accessor32<float, 4, torch::RestrictPtrTraits>());
} else {
block.y = TRANSP_WARPS_X_TILE_SM100;
permute_to0312_k<WARP_SIZE, TRANSP_WARPS_X_TILE_SM100>
<<<grid, block, 0, stream>>>(src.size(3),
src.size(1),
src.size(2),
src.packed_accessor32<float, 4, torch::RestrictPtrTraits>(),
dst.packed_accessor32<float, 4, torch::RestrictPtrTraits>());
}
return dst;
}
// END - tensor permutation kernels and functions
// BEGIN - general host-side functions
unsigned int next_pow2(unsigned int x) {
x -= 1;
#pragma unroll
for(int i = 1; i <= sizeof(x)*8 / 2; i *= 2) {
x |= x >> i;
}
return x+1;
}
// END - general host-side functions
// coding=utf-8
//
// SPDX-FileCopyrightText: Copyright (c) 2025 The torch-harmonics Authors. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#pragma once
#include <ATen/ATen.h>
#define WARP_SIZE (32)
#define FULL_MASK (0xFFFFFFFF)
#define DIV_UP(a,b) (((a)+((b)-1))/(b))
// CSR rows sorting kernels and functions
at::Tensor sortRows(int nlat_out, at::Tensor row_off, cudaStream_t stream);
// 4D tensor permutation kernels and functions
at::Tensor permute_4D_floatT_to0231(at::Tensor src, cudaStream_t stream);
at::Tensor permute_4D_floatT_to0312(at::Tensor src, cudaStream_t stream);
// Host tensor dump and CSR manipulation functions
void dump_tensor(const char *fname, at::Tensor t);
void dump_csr(const char *fname, at::Tensor roff, at::Tensor cols);
int part_csr_rows(int *row_perm,
const at::Tensor roff,
const at::Tensor cols,
int **part_off,
int **part_val);
int verify_part(const int npart,
const int *part_off,
const int *part_val,
const at::Tensor roff,
const at::Tensor cols);
void verify_part_new(const int nlon_out,
const int nlat_in,
const int nlon_in,
const int npart, // partitioning data
const int *part_off,
const int *part_val,
const at::Tensor roff,
const at::Tensor cols);
unsigned int next_pow2(unsigned int x);
// utility host functions and templates
template<unsigned int ALIGN>
int is_aligned(const void *ptr) {
static_assert(0 == (ALIGN & (ALIGN-1)));
return (0 == (uintptr_t(ptr) & (ALIGN-1)));
}
// utility device functions and templates
template<typename FLOATV_T>
__device__ FLOATV_T __vset(float x) {
static_assert(sizeof(FLOATV_T) == 0, "Unsupported type for __vset");
return FLOATV_T{};
}
template<>
__device__ float __forceinline__ __vset<float>(float x) {
return x;
}
__device__ float __forceinline__ __vmul(float a, float b) {
return a*b;
}
__device__ float __forceinline__ __vadd(float a, float b) {
return a+b;
}
__device__ float __forceinline__ __vsub(float a, float b) {
return a-b;
}
__device__ float __forceinline__ __vred(float a) {
return a;
}
__device__ float __forceinline__ __vscale(float s, float v) {
return v*s;
}
__device__ float __forceinline__ __vdiv(float s, float v) {
return v/s;
}
template<>
__device__ float4 __forceinline__ __vset<float4>(float x) {
return make_float4(x, x, x, x);
}
__device__ float4 __forceinline__ __vmul(float4 a, float4 b) {
return make_float4(a.x*b.x, a.y*b.y, a.z*b.z, a.w*b.w);
}
__device__ float4 __forceinline__ __vadd(float4 a, float4 b) {
return make_float4(a.x+b.x, a.y+b.y, a.z+b.z, a.w+b.w);
}
__device__ float4 __forceinline__ __vsub(float4 a, float4 b) {
return make_float4(a.x-b.x, a.y-b.y, a.z-b.z, a.w-b.w);
}
__device__ float __forceinline__ __vred(float4 a) {
return a.x + a.y + a.z + a.w;
}
__device__ float4 __forceinline__ __vscale(float s, float4 v) {
return make_float4(s*v.x, s*v.y, s*v.z, s*v.w);
}
__device__ float4 __forceinline__ __vdiv(float s, float4 v) {
return make_float4(s/v.x, s/v.y, s/v.z, s/v.w);;
}
template<typename VAL_T>
__device__ VAL_T __warp_sum(VAL_T val) {
#pragma unroll
for(int i = WARP_SIZE/2; i; i /= 2) {
val += __shfl_xor_sync(FULL_MASK, val, i, WARP_SIZE);
}
return val;
}
template<int BDIM_X,
int BDIM_Y=1,
int BDIM_Z=1,
typename VAL_T>
__device__ VAL_T __block_sum(VAL_T val) {
const int NWARP = (BDIM_X*BDIM_Y*BDIM_Z) / WARP_SIZE;
val = __warp_sum(val);
if constexpr(NWARP > 1) {
int tid = threadIdx.x;
if constexpr(BDIM_Y > 1) { tid += threadIdx.y*BDIM_X; }
if constexpr(BDIM_Z > 1) { tid += threadIdx.z*BDIM_X*BDIM_Y; }
const int lid = tid%WARP_SIZE;
const int wid = tid/WARP_SIZE;
__shared__ VAL_T sh[NWARP];
if (lid == 0) {
sh[wid] = val;
}
__syncthreads();
if (wid == 0) {
val = (lid < NWARP) ? sh[lid] : 0;
val = __warp_sum(val);
__syncwarp();
if (!lid) {
sh[0] = val;
}
}
__syncthreads();
val = sh[0];
__syncthreads();
}
return val;
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment