Commit 7126fb9a authored by Boris Bonev's avatar Boris Bonev Committed by Boris Bonev
Browse files

some cleanup in the model

parent d81fbd34
...@@ -275,10 +275,10 @@ class LocalSphericalNeuralOperatorNet(nn.Module): ...@@ -275,10 +275,10 @@ class LocalSphericalNeuralOperatorNet(nn.Module):
Parameters Parameters
----------- -----------
operator_type : str, optional
Type of operator to use ('driscoll-healy', 'diagonal'), by default "driscoll-healy"
img_shape : tuple, optional img_shape : tuple, optional
Shape of the input channels, by default (128, 256) Shape of the input channels, by default (128, 256)
operator_type : str, optional
Type of operator to use ('driscoll-healy', 'diagonal'), by default "driscoll-healy"
kernel_shape: tuple, int kernel_shape: tuple, int
scale_factor : int, optional scale_factor : int, optional
Scale factor to use, by default 3 Scale factor to use, by default 3
...@@ -308,8 +308,6 @@ class LocalSphericalNeuralOperatorNet(nn.Module): ...@@ -308,8 +308,6 @@ class LocalSphericalNeuralOperatorNet(nn.Module):
Fraction of hard thresholding (frequency cutoff) to apply, by default 1.0 Fraction of hard thresholding (frequency cutoff) to apply, by default 1.0
big_skip : bool, optional big_skip : bool, optional
Whether to add a single large skip connection, by default True Whether to add a single large skip connection, by default True
rank : float, optional
Rank of the approximation, by default 1.0
pos_embed : bool, optional pos_embed : bool, optional
Whether to use positional embedding, by default True Whether to use positional embedding, by default True
...@@ -340,8 +338,8 @@ class LocalSphericalNeuralOperatorNet(nn.Module): ...@@ -340,8 +338,8 @@ class LocalSphericalNeuralOperatorNet(nn.Module):
def __init__( def __init__(
self, self,
operator_type="driscoll-healy",
img_size=(128, 256), img_size=(128, 256),
operator_type="driscoll-healy",
grid="equiangular", grid="equiangular",
grid_internal="legendre-gauss", grid_internal="legendre-gauss",
scale_factor=4, scale_factor=4,
......
...@@ -146,10 +146,10 @@ class SphericalFourierNeuralOperatorNet(nn.Module): ...@@ -146,10 +146,10 @@ class SphericalFourierNeuralOperatorNet(nn.Module):
Parameters Parameters
---------- ----------
operator_type : str, optional
Type of operator to use ('driscoll-healy', 'diagonal'), by default "driscoll-healy"
img_shape : tuple, optional img_shape : tuple, optional
Shape of the input channels, by default (128, 256) Shape of the input channels, by default (128, 256)
operator_type : str, optional
Type of operator to use ('driscoll-healy', 'diagonal'), by default "driscoll-healy"
scale_factor : int, optional scale_factor : int, optional
Scale factor to use, by default 3 Scale factor to use, by default 3
in_chans : int, optional in_chans : int, optional
...@@ -178,8 +178,6 @@ class SphericalFourierNeuralOperatorNet(nn.Module): ...@@ -178,8 +178,6 @@ class SphericalFourierNeuralOperatorNet(nn.Module):
Fraction of hard thresholding (frequency cutoff) to apply, by default 1.0 Fraction of hard thresholding (frequency cutoff) to apply, by default 1.0
big_skip : bool, optional big_skip : bool, optional
Whether to add a single large skip connection, by default True Whether to add a single large skip connection, by default True
rank : float, optional
Rank of the approximation, by default 1.0
pos_embed : bool, optional pos_embed : bool, optional
Whether to use positional embedding, by default True Whether to use positional embedding, by default True
...@@ -205,8 +203,8 @@ class SphericalFourierNeuralOperatorNet(nn.Module): ...@@ -205,8 +203,8 @@ class SphericalFourierNeuralOperatorNet(nn.Module):
def __init__( def __init__(
self, self,
operator_type="driscoll-healy",
img_size=(128, 256), img_size=(128, 256),
operator_type="driscoll-healy",
grid="equiangular", grid="equiangular",
grid_internal="legendre-gauss", grid_internal="legendre-gauss",
scale_factor=3, scale_factor=3,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment