[2] Rapp, R.H.; A Fortran Program for the Computation of Gravimetric Quantities from High Degree Spherical Harmonic Expansions, Ohio State University Columbus; report; 1982;
https://apps.dtic.mil/sti/citations/ADA123406
[3] Schrama, E.; Orbit integration based upon interpolated gravitational gradients
Computes the values of the derivatives $\frac{d}{d \theta} P^m_l(\cos \theta)$
at the positions specified by x (theta), as well as $\frac{1}{\sin \theta} P^m_l(\cos \theta)$,
needed for the computation of the vector spherical harmonics. The resulting tensor has shape
(2, mmax, lmax, len(x)).
computation follows
[2] Wang, B., Wang, L., Xie, Z.; Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids; Adv Comput Math.
Defines a module for computing the forward (real-valued) SHT.
Precomputes Legendre Gauss nodes, weights and associated Legendre polynomials on these nodes.
The SHT is applied to the last two dimensions of the input
[1] Schaeffer, N. Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, G3: Geochemistry, Geophysics, Geosystems.
[2] Wang, B., Wang, L., Xie, Z.; Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids; Adv Comput Math.
Defines a module for computing the inverse (real-valued) SHT.
Precomputes Legendre Gauss nodes, weights and associated Legendre polynomials on these nodes.
nlat, nlon: Output dimensions
lmax, mmax: Input dimensions (spherical coefficients). For convenience, these are inferred from the output dimensions
[1] Schaeffer, N. Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, G3: Geochemistry, Geophysics, Geosystems.
[2] Wang, B., Wang, L., Xie, Z.; Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids; Adv Comput Math.
Defines a module for computing the forward (real) vector SHT.
Precomputes Legendre Gauss nodes, weights and associated Legendre polynomials on these nodes.
The SHT is applied to the last three dimensions of the input.
[1] Schaeffer, N. Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, G3: Geochemistry, Geophysics, Geosystems.
[2] Wang, B., Wang, L., Xie, Z.; Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids; Adv Comput Math.
Defines a module for computing the inverse (real-valued) vector SHT.
Precomputes Legendre Gauss nodes, weights and associated Legendre polynomials on these nodes.
[1] Schaeffer, N. Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, G3: Geochemistry, Geophysics, Geosystems.
[2] Wang, B., Wang, L., Xie, Z.; Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids; Adv Comput Math.