disco_helpers.cpp 4.54 KB
Newer Older
Boris Bonev's avatar
Boris Bonev committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
// coding=utf-8
//
// SPDX-FileCopyrightText: Copyright (c) 2024 The torch-harmonics Authors. All rights reserved.
// SPDX-License-Identifier: BSD-3-Clause
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "disco.h"

template<typename REAL_T>
void preprocess_psi_kernel(int64_t nnz,
			   int64_t K,
			   int64_t Ho,
			   int64_t *ker_h,
			   int64_t *row_h,
			   int64_t *col_h,
			   int64_t *roff_h,
			   REAL_T *val_h,
			   int64_t& nrows) {

  int64_t *Koff = new int64_t[K];
  for(int i = 0; i < K; i++) {
    Koff[i] = 0;
  }

  for(int64_t i = 0; i < nnz; i++) {
    Koff[ker_h[i]]++;
  }

  int64_t prev = Koff[0];
  Koff[0] = 0;
  for(int i = 1; i < K; i++) {
    int64_t save = Koff[i];
    Koff[i] = prev + Koff[i-1];
    prev = save;
  }

  int64_t *ker_sort = new int64_t[nnz];
  int64_t *row_sort = new int64_t[nnz];
  int64_t *col_sort = new int64_t[nnz];
  float   *val_sort = new   float[nnz];

  for(int64_t i = 0; i < nnz; i++) {

    const int64_t ker = ker_h[i];
    const int64_t off = Koff[ker]++;

    ker_sort[off] = ker;
    row_sort[off] = row_h[i];
    col_sort[off] = col_h[i];
    val_sort[off] = val_h[i];
  }
  for(int64_t i = 0; i < nnz; i++) {
    ker_h[i] = ker_sort[i];
    row_h[i] = row_sort[i];
    col_h[i] = col_sort[i];
    val_h[i] = val_sort[i];
  }

  delete [] Koff;
  delete [] ker_sort;
  delete [] row_sort;
  delete [] col_sort;
  delete [] val_sort;

  // compute rows offsets
  nrows = 1;
  roff_h[0] = 0;
  for(int64_t i = 1; i < nnz; i++) {

    if (row_h[i-1] == row_h[i]) continue;
    roff_h[nrows++] = i;

    if (nrows > Ho*K) {
      fprintf(stderr,
              "%s:%d: error, found more rows in the K COOs than Ho*K (%ld)\n",
              __FILE__, __LINE__, int64_t(Ho)*K);
      exit(EXIT_FAILURE);
    }
  }
  roff_h[nrows] = nnz;

  return;
}


torch::Tensor preprocess_psi(const int64_t K,
			     const int64_t Ho,
			     torch::Tensor ker_idx, 
			     torch::Tensor row_idx,
			     torch::Tensor col_idx,
			     torch::Tensor val) {
  
  CHECK_INPUT_TENSOR(ker_idx);
  CHECK_INPUT_TENSOR(row_idx);
  CHECK_INPUT_TENSOR(col_idx);
  CHECK_INPUT_TENSOR(val);
  
  int64_t nnz = val.size(0);
  int64_t *ker_h = ker_idx.data_ptr<int64_t>();
  int64_t *row_h = row_idx.data_ptr<int64_t>();
  int64_t *col_h = col_idx.data_ptr<int64_t>();
  int64_t *roff_h = new int64_t[Ho*K+1];
  int64_t nrows;
  //float *val_h = val.data_ptr<float>();

  AT_DISPATCH_FLOATING_TYPES(val.scalar_type(), "preprocess_psi", ([&]{
								     preprocess_psi_kernel<scalar_t>(nnz, K, Ho,
												     ker_h,
												     row_h,
												     col_h,
												     roff_h,
												     val.data_ptr<scalar_t>(),
												     nrows);
								   }));

  // create output tensor
  auto options = torch::TensorOptions().dtype(row_idx.dtype());
  auto roff_idx = torch::empty({nrows+1}, options);
  int64_t *roff_out_h = roff_idx.data_ptr<int64_t>();

  for(int64_t i = 0; i < (nrows+1); i++) {
    roff_out_h[i] = roff_h[i];
  }
  delete [] roff_h;
  
  return roff_idx;
}

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  m.def("preprocess_psi", &preprocess_psi, "Sort psi matrix, required for using disco_cuda.");
}