layers.py 19.7 KB
Newer Older
Boris Bonev's avatar
Boris Bonev committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# 
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

from functools import partial
from collections import OrderedDict
from copy import Error, deepcopy
from re import S
from numpy.lib.arraypad import pad
import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.fft
from torch.nn.modules.container import Sequential
from torch.utils.checkpoint import checkpoint, checkpoint_sequential
from torch.cuda import amp
from typing import Optional
import math

from torch_harmonics import *
from models.contractions import *
from models.activations import *

from models.factorizations import get_contract_fun

# # import FactorizedTensor from tensorly for tensorized operations
# import tensorly as tl
# from tensorly.plugins import use_opt_einsum
# tl.set_backend('pytorch')
# use_opt_einsum('optimal')
from tltorch.factorized_tensors.core import FactorizedTensor

def _no_grad_trunc_normal_(tensor, mean, std, a, b):
    # Cut & paste from PyTorch official master until it's in a few official releases - RW
    # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
    def norm_cdf(x):
        # Computes standard normal cumulative distribution function
        return (1. + math.erf(x / math.sqrt(2.))) / 2.
    
    if (mean < a - 2 * std) or (mean > b + 2 * std):
        warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
                      "The distribution of values may be incorrect.",
                      stacklevel=2)
        
    with torch.no_grad():
        # Values are generated by using a truncated uniform distribution and
        # then using the inverse CDF for the normal distribution.
        # Get upper and lower cdf values
        l = norm_cdf((a - mean) / std)
        u = norm_cdf((b - mean) / std)
        
        # Uniformly fill tensor with values from [l, u], then translate to
        # [2l-1, 2u-1].
        tensor.uniform_(2 * l - 1, 2 * u - 1)
        
        # Use inverse cdf transform for normal distribution to get truncated
        # standard normal
        tensor.erfinv_()
        
        # Transform to proper mean, std
        tensor.mul_(std * math.sqrt(2.))
        tensor.add_(mean)
                                                                                                                                
        # Clamp to ensure it's in the proper range
        tensor.clamp_(min=a, max=b)
        return tensor
    
    
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
    r"""Fills the input Tensor with values drawn from a truncated
    normal distribution. The values are effectively drawn from the
    normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
    with values outside :math:`[a, b]` redrawn until they are within
    the bounds. The method used for generating the random values works
    best when :math:`a \leq \text{mean} \leq b`.
    Args:
    tensor: an n-dimensional `torch.Tensor`
    mean: the mean of the normal distribution
    std: the standard deviation of the normal distribution
    a: the minimum cutoff value
    b: the maximum cutoff value
    Examples:
    >>> w = torch.empty(3, 5)
    >>> nn.init.trunc_normal_(w)
    """
    return _no_grad_trunc_normal_(tensor, mean, std, a, b)


@torch.jit.script
def drop_path(x: torch.Tensor, drop_prob: float = 0., training: bool = False) -> torch.Tensor:
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
    'survival rate' as the argument.
    """
    if drop_prob == 0. or not training:
        return x
    keep_prob = 1. - drop_prob
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2d ConvNets
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob
        
    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training) 

class MLP(nn.Module):
    def __init__(self,
                 in_features,
                 hidden_features = None,
                 out_features = None,
                 act_layer = nn.GELU,
                 output_bias = True,
                 drop_rate = 0.,
                 checkpointing = False):
        super(MLP, self).__init__()
        self.checkpointing = checkpointing
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features

        fc1 = nn.Conv2d(in_features, hidden_features, 1, bias=True)
        # ln1 = norm_layer(num_features=hidden_features)
        act = act_layer()
        fc2 = nn.Conv2d(hidden_features, out_features, 1, bias = output_bias)
        if drop_rate > 0.:
            drop = nn.Dropout(drop_rate)
            self.fwd = nn.Sequential(fc1, act, drop, fc2, drop)
        else:
            self.fwd = nn.Sequential(fc1, act, fc2)
 
    @torch.jit.ignore
    def checkpoint_forward(self, x):
        return checkpoint(self.fwd, x)
        
    def forward(self, x):
        if self.checkpointing:
            return self.checkpoint_forward(x)
        else:
            return self.fwd(x)

class RealFFT2(nn.Module):
    """
    Helper routine to wrap FFT similarly to the SHT
    """
    def __init__(self,
                 nlat,
                 nlon,
                 lmax = None,
                 mmax = None):
        super(RealFFT2, self).__init__()

        self.nlat = nlat
        self.nlon = nlon
        self.lmax = lmax or self.nlat
        self.mmax = mmax or self.nlon // 2 + 1

    def forward(self, x):
        y = torch.fft.rfft2(x, dim=(-2, -1), norm="ortho")
        y = torch.cat((y[..., :math.ceil(self.lmax/2), :self.mmax], y[..., -math.floor(self.lmax/2):, :self.mmax]), dim=-2)
        return y

class InverseRealFFT2(nn.Module):
    """
    Helper routine to wrap FFT similarly to the SHT
    """
    def __init__(self,
                 nlat,
                 nlon,
                 lmax = None,
                 mmax = None):
        super(InverseRealFFT2, self).__init__()

        self.nlat = nlat
        self.nlon = nlon
        self.lmax = lmax or self.nlat
        self.mmax = mmax or self.nlon // 2 + 1

    def forward(self, x):
        return torch.fft.irfft2(x, dim=(-2, -1), s=(self.nlat, self.nlon), norm="ortho")

class SpectralConvS2(nn.Module):
    """
    Spectral Convolution according to Driscoll & Healy. Designed for convolutions on the two-sphere S2
    using the Spherical Harmonic Transforms in torch-harmonics, but supports convolutions on the periodic
    domain via the RealFFT2 and InverseRealFFT2 wrappers.
    """
    
    def __init__(self,
                 forward_transform,
                 inverse_transform,
                 in_channels,
                 out_channels,
                 scale = 'auto',
                 operator_type = 'diagonal',
                 rank = 0.2,
                 factorization = None,
                 separable = False,
                 implementation = 'factorized',
                 decomposition_kwargs=dict(),
                 bias = False):
        super(SpectralConvS2, self).__init__()

        if scale == 'auto':
            scale = (1 / (in_channels * out_channels))

        self.forward_transform = forward_transform
        self.inverse_transform = inverse_transform

        self.modes_lat = self.inverse_transform.lmax
        self.modes_lon = self.inverse_transform.mmax

        self.scale_residual = (self.forward_transform.nlat != self.inverse_transform.nlat) \
                        or (self.forward_transform.nlon != self.inverse_transform.nlon)

        # Make sure we are using a Complex Factorized Tensor
        if factorization is None:
            factorization = 'Dense' # No factorization
        if not factorization.lower().startswith('complex'):
            factorization = f'Complex{factorization}'

        # remember factorization details
        self.operator_type = operator_type
        self.rank = rank
        self.factorization = factorization
        self.separable = separable

        assert self.inverse_transform.lmax == self.modes_lat
        assert self.inverse_transform.mmax == self.modes_lon

        weight_shape = [in_channels]

        if not self.separable:
            weight_shape += [out_channels]

        if self.operator_type == 'diagonal':
            weight_shape += [self.modes_lat, self.modes_lon]
        elif self.operator_type == 'block-diagonal':
            weight_shape += [self.modes_lat, self.modes_lon, self.modes_lon]
        elif self.operator_type == 'vector':
            weight_shape += [self.modes_lat]
        else:
            raise NotImplementedError(f"Unkonw operator type f{self.operator_type}")

        # form weight tensors
        self.weight = FactorizedTensor.new(weight_shape, rank=self.rank, factorization=factorization, 
                                           fixed_rank_modes=False, **decomposition_kwargs)
        
        # initialization of weights
        self.weight.normal_(0, scale)

        self._contract = get_contract_fun(self.weight, implementation=implementation, separable=separable)
   
        if bias:
            self.bias = nn.Parameter(scale * torch.randn(1, out_channels, 1, 1))

        
    def forward(self, x):

        dtype = x.dtype
        x = x.float()
        residual = x
        B, C, H, W = x.shape

        with amp.autocast(enabled=False):
            x = self.forward_transform(x)
            if self.scale_residual:
                residual = self.inverse_transform(x)

        x = self._contract(x, self.weight, separable=self.separable, operator_type=self.operator_type)

        with amp.autocast(enabled=False):
            x = self.inverse_transform(x)
            
        if hasattr(self, 'bias'):
            x = x + self.bias
        x = x.type(dtype)
    
        return x, residual

class SpectralAttention2d(nn.Module):
    """
    geometrical Spectral Attention layer
    """
    
    def __init__(self,
                 forward_transform,
                 inverse_transform,
                 embed_dim,
                 sparsity_threshold = 0.0,
                 hidden_size_factor = 2,
                 use_complex_kernels = False,
                 complex_activation = 'real',
                 bias = False,
                 spectral_layers = 1,
                 drop_rate = 0.):
        super(SpectralAttention2d, self).__init__()
        
        self.embed_dim = embed_dim
        self.sparsity_threshold = sparsity_threshold
        self.hidden_size = int(hidden_size_factor * self.embed_dim)
        self.scale = 1 / embed_dim**2
        self.mul_add_handle = compl_muladd2d_fwd_c if use_complex_kernels else compl_muladd2d_fwd
        self.mul_handle = compl_mul2d_fwd_c if use_complex_kernels else compl_mul2d_fwd
        self.spectral_layers = spectral_layers

        self.modes_lat = forward_transform.lmax
        self.modes_lon = forward_transform.mmax

        # only storing the forward handle to be able to call it
        self.forward_transform = forward_transform
        self.inverse_transform = inverse_transform

        self.scale_residual = (self.forward_transform.nlat != self.inverse_transform.nlat) \
                or (self.forward_transform.nlon != self.inverse_transform.nlon)

        assert inverse_transform.lmax == self.modes_lat
        assert inverse_transform.mmax == self.modes_lon

        # weights
        w = [self.scale * torch.randn(self.embed_dim, self.hidden_size, 2)]
        for l in range(1, self.spectral_layers):
            w.append(self.scale * torch.randn(self.hidden_size, self.hidden_size, 2))
        self.w = nn.ParameterList(w)

        if bias:
            self.b = nn.ParameterList([self.scale * torch.randn(self.hidden_size, 1, 2) for _ in range(self.spectral_layers)])
        
        self.wout = nn.Parameter(self.scale * torch.randn(self.hidden_size, self.embed_dim, 2))

        self.drop = nn.Dropout(drop_rate) if drop_rate > 0. else nn.Identity()

        self.activations = nn.ModuleList([])
        for l in range(0, self.spectral_layers):
            self.activations.append(ComplexReLU(mode=complex_activation, bias_shape=(self.hidden_size, 1, 1), scale=self.scale))

    def forward_mlp(self, x):

        x = torch.view_as_real(x)

        xr = x

        for l in range(self.spectral_layers):
            if hasattr(self, 'b'):
                xr = self.mul_add_handle(xr, self.w[l], self.b[l])
            else:
                xr = self.mul_handle(xr, self.w[l])
            xr = torch.view_as_complex(xr)
            xr = self.activations[l](xr)
            xr = self.drop(xr)
            xr = torch.view_as_real(xr)
    
        x = self.mul_handle(xr, self.wout)

        x = torch.view_as_complex(x)

        return x

    def forward(self, x):

        dtype = x.dtype
        x = x.float()
        residual = x

        with amp.autocast(enabled=False):
            x = self.forward_transform(x)
            if self.scale_residual:
                residual = self.inverse_transform(x)

        x = self.forward_mlp(x)

        with amp.autocast(enabled=False):
            x = self.inverse_transform(x)
        
        x = x.type(dtype)

        return x, residual


class SpectralAttentionS2(nn.Module):
    """
    Spherical non-linear FNO layer
    """
    
    def __init__(self,
                 forward_transform,
                 inverse_transform,
                 embed_dim,
                 operator_type = 'diagonal',
                 sparsity_threshold = 0.0,
                 hidden_size_factor = 2,
                 complex_activation = 'real',
                 scale = 'auto',
                 bias = False,
                 spectral_layers = 1,
                 drop_rate = 0.):
        super(SpectralAttentionS2, self).__init__()
        
        self.embed_dim = embed_dim
        self.sparsity_threshold = sparsity_threshold
        self.operator_type = operator_type
        self.spectral_layers = spectral_layers

        if scale == 'auto':
            self.scale = (1 / (embed_dim * embed_dim))

        self.modes_lat = forward_transform.lmax
        self.modes_lon = forward_transform.mmax

        # only storing the forward handle to be able to call it
        self.forward_transform = forward_transform
        self.inverse_transform = inverse_transform

        self.scale_residual = (self.forward_transform.nlat != self.inverse_transform.nlat) \
                or (self.forward_transform.nlon != self.inverse_transform.nlon)

        assert inverse_transform.lmax == self.modes_lat
        assert inverse_transform.mmax == self.modes_lon

        hidden_size = int(hidden_size_factor * self.embed_dim)

        if operator_type == 'diagonal':
            self.mul_add_handle = compl_muladd2d_fwd
            self.mul_handle = compl_mul2d_fwd

            # weights
            w = [self.scale * torch.randn(self.embed_dim, hidden_size, 2)]
            for l in range(1, self.spectral_layers):
                w.append(self.scale * torch.randn(hidden_size, hidden_size, 2))
            self.w = nn.ParameterList(w)

            self.wout = nn.Parameter(self.scale * torch.randn(hidden_size, self.embed_dim, 2))

            if bias:
                self.b = nn.ParameterList([self.scale * torch.randn(hidden_size, 1, 1, 2) for _ in range(self.spectral_layers)])

            self.activations = nn.ModuleList([])
            for l in range(0, self.spectral_layers):
                self.activations.append(ComplexReLU(mode=complex_activation, bias_shape=(hidden_size, 1, 1), scale=self.scale))
        
        elif operator_type == 'vector':

            self.mul_add_handle = compl_exp_muladd2d_fwd
            self.mul_handle = compl_exp_mul2d_fwd

            # weights
            w = [self.scale * torch.randn(self.modes_lat, self.embed_dim, hidden_size, 2)]
            for l in range(1, self.spectral_layers):
                w.append(self.scale * torch.randn(self.modes_lat, hidden_size, hidden_size, 2))
            self.w = nn.ParameterList(w)

            if bias:
                self.b = nn.ParameterList([self.scale * torch.randn(hidden_size, 1, 1, 2) for _ in range(self.spectral_layers)])
            
            self.wout = nn.Parameter(self.scale * torch.randn(self.modes_lat, hidden_size, self.embed_dim, 2))

            self.activations = nn.ModuleList([])
            for l in range(0, self.spectral_layers):
                self.activations.append(ComplexReLU(mode=complex_activation, bias_shape=(hidden_size, 1, 1), scale=self.scale))

        else:
            raise ValueError('Unknown operator type')


        self.drop = nn.Dropout(drop_rate) if drop_rate > 0. else nn.Identity()


    def forward_mlp(self, x):

        B, C, H, W = x.shape

        xr = torch.view_as_real(x)

        for l in range(self.spectral_layers):
            if hasattr(self, 'b'):
                xr = self.mul_add_handle(xr, self.w[l], self.b[l])
            else:
                xr = self.mul_handle(xr, self.w[l])
            xr = torch.view_as_complex(xr)
            xr = self.activations[l](xr)
            xr = self.drop(xr)
            xr = torch.view_as_real(xr)

        # final MLP
        x = self.mul_handle(xr, self.wout)

        x = torch.view_as_complex(x)

        return x

    def forward(self, x):

        dtype = x.dtype
        x = x.to(torch.float32)
        residual = x

        # FWD transform
        with amp.autocast(enabled=False):
            x = self.forward_transform(x)
            if self.scale_residual:
                residual = self.inverse_transform(x)

        # MLP
        x = self.forward_mlp(x)

        # BWD transform
        with amp.autocast(enabled=False):
            x = self.inverse_transform(x)

        # cast back to initial precision
        x = x.to(dtype)

        return x, residual