factorizations.py 7.37 KB
Newer Older
Boris Bonev's avatar
Boris Bonev committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# 
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import torch

import tensorly as tl
tl.set_backend('pytorch')

from tltorch.factorized_tensors.core import FactorizedTensor

einsum_symbols = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'

def _contract_dense(x, weight, separable=False, operator_type='diagonal'):
    order = tl.ndim(x)
    # batch-size, in_channels, x, y...
    x_syms = list(einsum_symbols[:order])

    # in_channels, out_channels, x, y...
    weight_syms = list(x_syms[1:]) # no batch-size

    # batch-size, out_channels, x, y...
    if separable:
        out_syms = [x_syms[0]] + list(weight_syms)
    else:
        weight_syms.insert(1, einsum_symbols[order]) # outputs
        out_syms = list(weight_syms)
        out_syms[0] = x_syms[0] 

    if operator_type == 'diagonal':
        pass
    elif operator_type == 'block-diagonal':
        weight_syms.insert(-1, einsum_symbols[order+1])
        out_syms[-1] = weight_syms[-2]
    elif operator_type == 'vector':
        weight_syms.pop()
    else:
        raise ValueError(f"Unkonw operator type {operator_type}")

    eq= ''.join(x_syms) + ',' + ''.join(weight_syms) + '->' + ''.join(out_syms)

    if not torch.is_tensor(weight):
        weight = weight.to_tensor()

    return tl.einsum(eq, x, weight)

def _contract_cp(x, cp_weight, separable=False, operator_type='diagonal'):
    order = tl.ndim(x)

    x_syms = str(einsum_symbols[:order])
    rank_sym = einsum_symbols[order]
    out_sym = einsum_symbols[order+1]
    out_syms = list(x_syms)

    if separable:
        factor_syms = [einsum_symbols[1]+rank_sym] #in only
    else:
        out_syms[1] = out_sym
        factor_syms = [einsum_symbols[1]+rank_sym, out_sym+rank_sym] #in, out
    
    factor_syms += [xs+rank_sym for xs in x_syms[2:]] #x, y, ...

    if operator_type == 'diagonal':
        pass
    elif operator_type == 'block-diagonal':
        out_syms[-1] = einsum_symbols[order+2]
        factor_syms += [out_syms[-1] + rank_sym]
    elif operator_type == 'vector':
        factor_syms.pop()
    else:
        raise ValueError(f"Unkonw operator type {operator_type}")

    eq = x_syms + ',' + rank_sym + ',' + ','.join(factor_syms) + '->' + ''.join(out_syms)

    return tl.einsum(eq, x, cp_weight.weights, *cp_weight.factors)
 

def _contract_tucker(x, tucker_weight, separable=False, operator_type='diagonal'):
    order = tl.ndim(x)

    x_syms = str(einsum_symbols[:order])
    out_sym = einsum_symbols[order]
    out_syms = list(x_syms)
    if separable:
        core_syms = einsum_symbols[order+1:2*order]
        # factor_syms = [einsum_symbols[1]+core_syms[0]] #in only
        factor_syms = [xs+rs for (xs, rs) in zip(x_syms[1:], core_syms)] #x, y, ...

    else:
        core_syms = einsum_symbols[order+1:2*order+1]
        out_syms[1] = out_sym
        factor_syms = [einsum_symbols[1]+core_syms[0], out_sym+core_syms[1]] #out, in
        factor_syms += [xs+rs for (xs, rs) in zip(x_syms[2:], core_syms[2:])] #x, y, ...

    if operator_type == 'diagonal':
        pass
    elif operator_type == 'block-diagonal':
        raise NotImplementedError(f"Operator type {operator_type} not implemented for Tucker")
    else:
        raise ValueError(f"Unkonw operator type {operator_type}")

    eq = x_syms + ',' + core_syms + ',' + ','.join(factor_syms) + '->' + ''.join(out_syms)

    return tl.einsum(eq, x, tucker_weight.core, *tucker_weight.factors)

def _contract_tt(x, tt_weight, separable=False, operator_type='diagonal'):
    order = tl.ndim(x)

    x_syms = list(einsum_symbols[:order])
    weight_syms = list(x_syms[1:]) # no batch-size

    if not separable:
        weight_syms.insert(1, einsum_symbols[order]) # outputs
        out_syms = list(weight_syms)
        out_syms[0] = x_syms[0]
    else:
        out_syms = list(x_syms)
    
    if operator_type == 'diagonal':
        pass
    elif operator_type == 'block-diagonal':
        weight_syms.insert(-1, einsum_symbols[order+1])
        out_syms[-1] = weight_syms[-2]
    elif operator_type == 'vector':
        weight_syms.pop()
    else:
        raise ValueError(f"Unkonw operator type {operator_type}")

    rank_syms = list(einsum_symbols[order+2:])
    tt_syms = []
    for i, s in enumerate(weight_syms):
        tt_syms.append([rank_syms[i], s, rank_syms[i+1]])
    eq = ''.join(x_syms) + ',' + ','.join(''.join(f) for f in tt_syms) + '->' + ''.join(out_syms)

    return tl.einsum(eq, x, *tt_weight.factors)


def get_contract_fun(weight, implementation='reconstructed', separable=False):
    """Generic ND implementation of Fourier Spectral Conv contraction
    
    Parameters
    ----------
    weight : tensorly-torch's FactorizedTensor
    implementation : {'reconstructed', 'factorized'}, default is 'reconstructed'
        whether to reconstruct the weight and do a forward pass (reconstructed)
        or contract directly the factors of the factorized weight with the input (factorized)
    
    Returns
    -------
    function : (x, weight) -> x * weight in Fourier space
    """
    if implementation == 'reconstructed':
        return _contract_dense
    elif implementation == 'factorized':
        if torch.is_tensor(weight):
            return _contract_dense
        elif isinstance(weight, FactorizedTensor):
            if weight.name.lower() == 'complexdense':
                return _contract_dense
            elif weight.name.lower() == 'complextucker':
                return _contract_tucker
            elif weight.name.lower() == 'complextt':
                return _contract_tt
            elif weight.name.lower() == 'complexcp':
                return _contract_cp
            else:
                raise ValueError(f'Got unexpected factorized weight type {weight.name}')
        else:
            raise ValueError(f'Got unexpected weight type of class {weight.__class__.__name__}')
    else:
        raise ValueError(f'Got {implementation=}, expected "reconstructed" or "factorized"')