contractions.py 5.34 KB
Newer Older
Boris Bonev's avatar
Boris Bonev committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# 
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import torch

"""
Contains complex contractions wrapped into jit for harmonic layers
"""

@torch.jit.script
def compl_contract2d_fwd(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
    tmp = torch.einsum("bixys,kixr->srbkx", a, b)
    res = torch.stack([tmp[0,0,...] - tmp[1,1,...], tmp[1,0,...] + tmp[0,1,...]], dim=-1)
    return res

@torch.jit.script
def compl_contract2d_fwd_c(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
    ac = torch.view_as_complex(a)
    bc = torch.view_as_complex(b)
    res = torch.einsum("bixy,kix->bkx", ac, bc)
    return torch.view_as_real(res)

@torch.jit.script
def compl_contract_fwd(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
    tmp = torch.einsum("bins,kinr->srbkn", a, b)
    res = torch.stack([tmp[0,0,...] - tmp[1,1,...], tmp[1,0,...] + tmp[0,1,...]], dim=-1)
    return res

@torch.jit.script
def compl_contract_fwd_c(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
    ac = torch.view_as_complex(a)
    bc = torch.view_as_complex(b)
    res = torch.einsum("bin,kin->bkn", ac, bc)
    return torch.view_as_real(res)

# Helper routines for spherical MLPs
@torch.jit.script
def compl_mul1d_fwd(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
    tmp = torch.einsum("bixs,ior->srbox", a, b)
    res = torch.stack([tmp[0,0,...] - tmp[1,1,...], tmp[1,0,...] + tmp[0,1,...]], dim=-1) 
    return res

@torch.jit.script
def compl_mul1d_fwd_c(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
    ac = torch.view_as_complex(a)
    bc = torch.view_as_complex(b)
    resc = torch.einsum("bix,io->box", ac, bc)
    res = torch.view_as_real(resc)
    return res

@torch.jit.script
def compl_muladd1d_fwd(a: torch.Tensor, b: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
    res = compl_mul1d_fwd(a, b) + c
    return res

@torch.jit.script
def compl_muladd1d_fwd_c(a: torch.Tensor, b: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
    tmpcc = torch.view_as_complex(compl_mul1d_fwd_c(a, b))
    cc = torch.view_as_complex(c)
    return torch.view_as_real(tmpcc + cc)

# Helper routines for FFT MLPs

@torch.jit.script
def compl_mul2d_fwd(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
    tmp = torch.einsum("bixys,ior->srboxy", a, b)
    res = torch.stack([tmp[0,0,...] - tmp[1,1,...], tmp[1,0,...] + tmp[0,1,...]], dim=-1) 
    return res


@torch.jit.script
def compl_mul2d_fwd_c(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
    ac = torch.view_as_complex(a)
    bc = torch.view_as_complex(b)
    resc = torch.einsum("bixy,io->boxy", ac, bc)
    res = torch.view_as_real(resc)
    return res

@torch.jit.script
def compl_muladd2d_fwd(a: torch.Tensor, b: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
    res = compl_mul2d_fwd(a, b) + c
    return res

@torch.jit.script
def compl_muladd2d_fwd_c(a: torch.Tensor, b: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
    tmpcc = torch.view_as_complex(compl_mul2d_fwd_c(a, b))
    cc = torch.view_as_complex(c)
    return torch.view_as_real(tmpcc + cc)

@torch.jit.script
def real_mul2d_fwd(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
    out = torch.einsum("bixy,io->boxy", a, b)
    return out

@torch.jit.script
def real_muladd2d_fwd(a: torch.Tensor, b: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
    return compl_mul2d_fwd_c(a, b) + c

# for all the experimental layers
# @torch.jit.script
# def compl_exp_mul2d_fwd(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
#     ac = torch.view_as_complex(a)
#     bc = torch.view_as_complex(b)
#     resc = torch.einsum("bixy,xio->boxy", ac, bc)
#     res = torch.view_as_real(resc)
#     return res

# @torch.jit.script
# def compl_exp_muladd2d_fwd(a: torch.Tensor, b: torch.Tensor, c: torch.Tensor) -> torch.Tensor:
#     tmpcc = torch.view_as_complex(compl_exp_mul2d_fwd(a, b))
#     cc = torch.view_as_complex(c)
#     return torch.view_as_real(tmpcc + cc)