activations.py 3.75 KB
Newer Older
Boris Bonev's avatar
Boris Bonev committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# 
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import torch
import torch.nn as nn

# complex activation functions

class ComplexCardioid(nn.Module):
    """
    Complex Cardioid activation function
    """
    def __init__(self):
        super(ComplexCardioid, self).__init__()

    def forward(self, z: torch.Tensor) -> torch.Tensor:
        out = 0.5 * (1. + torch.cos(z.angle())) * z
        return out

class ComplexReLU(nn.Module):
    """
    Complex-valued variants of the ReLU activation function
    """
    def __init__(self, negative_slope=0., mode="real", bias_shape=None, scale=1.):
        super(ComplexReLU, self).__init__()
        
        # store parameters
        self.mode = mode
        if self.mode in ["modulus", "halfplane"]:
            if bias_shape is not None:
                self.bias = nn.Parameter(scale * torch.ones(bias_shape, dtype=torch.float32))
            else:
                self.bias = nn.Parameter(scale * torch.ones((1), dtype=torch.float32))
        else:
            self.bias = 0

        self.negative_slope = negative_slope
        self.act = nn.LeakyReLU(negative_slope = negative_slope)

    def forward(self, z: torch.Tensor) -> torch.Tensor:

        if self.mode == "cartesian":
            zr = torch.view_as_real(z)
            za = self.act(zr)
            out = torch.view_as_complex(za)

        elif self.mode == "modulus":
            zabs = torch.sqrt(torch.square(z.real) + torch.square(z.imag))
            out = torch.where(zabs + self.bias > 0, (zabs + self.bias) * z / zabs, 0.0)

        elif self.mode == "cardioid":
            out = 0.5 * (1. + torch.cos(z.angle())) * z

        # elif self.mode == "halfplane":
        #     # bias is an angle parameter in this case
        #     modified_angle = torch.angle(z) - self.bias
        #     condition = torch.logical_and( (0. <= modified_angle), (modified_angle < torch.pi/2.) )
        #     out = torch.where(condition, z, self.negative_slope * z)

        elif self.mode == "real":
            zr = torch.view_as_real(z)
            outr = zr.clone()
            outr[..., 0] = self.act(zr[..., 0])
            out = torch.view_as_complex(outr)
        else:
            raise NotImplementedError
            
        return out