"vscode:/vscode.git/clone" did not exist on "417b44eba8b94f50b209b35dd6dcfa04a6609551"
tests.py 6.8 KB
Newer Older
Boris Bonev's avatar
Boris Bonev committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# 
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import unittest
Boris Bonev's avatar
Boris Bonev committed
33
34
from parameterized import parameterized
import math
Boris Bonev's avatar
Boris Bonev committed
35
36
import numpy as np
import torch
Boris Bonev's avatar
Boris Bonev committed
37
from torch.autograd import gradcheck
Boris Bonev's avatar
Boris Bonev committed
38
39
40
41
42
43
44
45
46
47
48
49
from torch_harmonics import *

# try:
#     from tqdm import tqdm
# except:
#     tqdm = lambda x : x

tqdm = lambda x : x

class TestLegendrePolynomials(unittest.TestCase):

    def setUp(self):
Boris Bonev's avatar
Boris Bonev committed
50
        self.cml = lambda m, l : np.sqrt((2*l + 1) / 4 / np.pi) * np.sqrt(math.factorial(l-m) / math.factorial(l+m))
Boris Bonev's avatar
Boris Bonev committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
        self.pml = dict()

        # preparing associated Legendre Polynomials (These include the Condon-Shortley phase)
        # for reference see e.g. https://en.wikipedia.org/wiki/Associated_Legendre_polynomials
        self.pml[(0, 0)] = lambda x : np.ones_like(x)
        self.pml[(0, 1)] = lambda x : x
        self.pml[(1, 1)] = lambda x : - np.sqrt(1. - x**2)
        self.pml[(0, 2)] = lambda x : 0.5 * (3*x**2 - 1)
        self.pml[(1, 2)] = lambda x : - 3 * x * np.sqrt(1. - x**2)
        self.pml[(2, 2)] = lambda x : 3 * (1 - x**2)
        self.pml[(0, 3)] = lambda x : 0.5 * (5*x**3 - 3*x)
        self.pml[(1, 3)] = lambda x : 1.5 * (1 - 5*x**2) * np.sqrt(1. - x**2)
        self.pml[(2, 3)] = lambda x : 15 * x * (1 - x**2)
        self.pml[(3, 3)] = lambda x : -15 * np.sqrt(1. - x**2)**3

        self.lmax = self.mmax = 4

Boris Bonev's avatar
Boris Bonev committed
68
69
        self.tol = 1e-9

Boris Bonev's avatar
Boris Bonev committed
70
71
    def test_legendre(self):
        print("Testing computation of associated Legendre polynomials")
72
        from torch_harmonics.legendre import legpoly
Boris Bonev's avatar
Boris Bonev committed
73

74
75
        t = np.linspace(0, 1, 100)
        vdm = legpoly(self.mmax, self.lmax, t)
Boris Bonev's avatar
Boris Bonev committed
76
77
78

        for l in range(self.lmax):
            for m in range(l+1):
79
                diff = vdm[m, l] / self.cml(m,l) - self.pml[(m,l)](t)
Boris Bonev's avatar
Boris Bonev committed
80
                self.assertTrue(diff.max() <= self.tol)
Boris Bonev's avatar
Boris Bonev committed
81
82
83
84
85
86
87
88
89
90
91
92
93


class TestSphericalHarmonicTransform(unittest.TestCase):

    def setUp(self):

        if torch.cuda.is_available():
            print("Running test on GPU")
            self.device = torch.device('cuda')
        else:
            print("Running test on CPU")
            self.device = torch.device('cpu')

Boris Bonev's avatar
Boris Bonev committed
94
95
96
97
98
99
100
101
102
103
    @parameterized.expand([
        [256, 512, 32, "ortho",   "equiangular",    1e-9],
        [256, 512, 32, "ortho",   "legendre-gauss", 1e-9],
        [256, 512, 32, "four-pi", "equiangular",    1e-9],
        [256, 512, 32, "four-pi", "legendre-gauss", 1e-9],
        [256, 512, 32, "schmidt", "equiangular",    1e-9],
        [256, 512, 32, "schmidt", "legendre-gauss", 1e-9],
    ])
    def test_sht(self, nlat, nlon, batch_size, norm, grid, tol):
        print(f"Testing real-valued SHT on {nlat}x{nlon} {grid} grid with {norm} normalization")
Boris Bonev's avatar
Boris Bonev committed
104
105

        testiters = [1, 2, 4, 8, 16]
Boris Bonev's avatar
Boris Bonev committed
106
107
108
109
        if grid == "equiangular":
            mmax = nlat // 2
        else:
            mmax = nlat
Boris Bonev's avatar
Boris Bonev committed
110
111
        lmax = mmax

Boris Bonev's avatar
Boris Bonev committed
112
113
        sht = RealSHT(nlat, nlon, mmax=mmax, lmax=lmax, grid=grid, norm=norm).to(self.device)
        isht = InverseRealSHT(nlat, nlon, mmax=mmax, lmax=lmax, grid=grid, norm=norm).to(self.device)
Boris Bonev's avatar
Boris Bonev committed
114

Boris Bonev's avatar
Boris Bonev committed
115
116
117
118
        with torch.no_grad():
            coeffs = torch.zeros(batch_size, lmax, mmax, device=self.device, dtype=torch.complex128)
            coeffs[:, :lmax, :mmax] = torch.randn(batch_size, lmax, mmax, device=self.device, dtype=torch.complex128)
            signal = isht(coeffs)
Boris Bonev's avatar
Boris Bonev committed
119
        
Boris Bonev's avatar
Boris Bonev committed
120
        # testing error accumulation
Boris Bonev's avatar
Boris Bonev committed
121
122
        for iter in testiters:
            with self.subTest(i = iter):
Boris Bonev's avatar
Boris Bonev committed
123
                print(f"{iter} iterations of batchsize {batch_size}:")
Boris Bonev's avatar
Boris Bonev committed
124
125
126
127
128
129

                base = signal

                for _ in tqdm(range(iter)):
                    base = isht(sht(base))
            
Boris Bonev's avatar
Boris Bonev committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
                err = torch.mean(torch.norm(base-signal, p='fro', dim=(-1,-2)) / torch.norm(signal, p='fro', dim=(-1,-2)) )
                print(f"final relative error: {err.item()}")
                self.assertTrue(err.item() <= tol)

    @parameterized.expand([
        [12, 24, 2, "ortho",   "equiangular",    1e-5],
        [12, 24, 2, "ortho",   "legendre-gauss", 1e-5],
        [12, 24, 2, "four-pi", "equiangular",    1e-5],
        [12, 24, 2, "four-pi", "legendre-gauss", 1e-5],
        [12, 24, 2, "schmidt", "equiangular",    1e-5],
        [12, 24, 2, "schmidt", "legendre-gauss", 1e-5],
    ])
    def test_sht_grad(self, nlat, nlon, batch_size, norm, grid, tol):
        print(f"Testing gradients of real-valued SHT on {nlat}x{nlon} {grid} grid with {norm} normalization")

        if grid == "equiangular":
            mmax = nlat // 2
        else:
            mmax = nlat
Boris Bonev's avatar
Boris Bonev committed
149
150
        lmax = mmax

Boris Bonev's avatar
Boris Bonev committed
151
152
        sht = RealSHT(nlat, nlon, mmax=mmax, lmax=lmax, grid=grid, norm=norm).to(self.device)
        isht = InverseRealSHT(nlat, nlon, mmax=mmax, lmax=lmax, grid=grid, norm=norm).to(self.device)
Boris Bonev's avatar
Boris Bonev committed
153

Boris Bonev's avatar
Boris Bonev committed
154
155
156
157
        with torch.no_grad():
            coeffs = torch.zeros(batch_size, lmax, mmax, device=self.device, dtype=torch.complex128)
            coeffs[:, :lmax, :mmax] = torch.randn(batch_size, lmax, mmax, device=self.device, dtype=torch.complex128)
            signal = isht(coeffs)
Boris Bonev's avatar
Boris Bonev committed
158
        
Boris Bonev's avatar
Boris Bonev committed
159
160
161
162
        input = torch.randn_like(signal, requires_grad=True)
        err_handle = lambda x : torch.mean(torch.norm( isht(sht(x)) - signal , p='fro', dim=(-1,-2)) / torch.norm(signal, p='fro', dim=(-1,-2)) )
        test_result = gradcheck(err_handle, input, eps=1e-6, atol=tol)
        self.assertTrue(test_result)
Boris Bonev's avatar
Boris Bonev committed
163
164
165


if __name__ == '__main__':
Boris Bonev's avatar
Boris Bonev committed
166
    unittest.main()