lsno.py 18.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import torch
import torch.nn as nn
import torch.amp as amp

from torch_harmonics import RealSHT, InverseRealSHT
from torch_harmonics import DiscreteContinuousConvS2, DiscreteContinuousConvTransposeS2
38
from torch_harmonics import ResampleS2
39

40
from ._layers import *
41
42
43
44
45
46
47

from functools import partial


class DiscreteContinuousEncoder(nn.Module):
    def __init__(
        self,
48
        in_shape=(721, 1440),
49
50
51
52
53
54
        out_shape=(480, 960),
        grid_in="equiangular",
        grid_out="equiangular",
        inp_chans=2,
        out_chans=2,
        kernel_shape=[3, 4],
55
        basis_type="piecewise linear",
56
57
58
59
60
61
62
63
64
        groups=1,
        bias=False,
    ):
        super().__init__()

        # set up local convolution
        self.conv = DiscreteContinuousConvS2(
            inp_chans,
            out_chans,
65
            in_shape=in_shape,
66
67
            out_shape=out_shape,
            kernel_shape=kernel_shape,
68
            basis_type=basis_type,
69
70
71
72
            grid_in=grid_in,
            grid_out=grid_out,
            groups=groups,
            bias=bias,
73
            theta_cutoff=4.0 * torch.pi / float(out_shape[0] - 1),
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
        )

    def forward(self, x):
        dtype = x.dtype

        with amp.autocast(device_type="cuda", enabled=False):
            x = x.float()
            x = self.conv(x)
            x = x.to(dtype=dtype)

        return x


class DiscreteContinuousDecoder(nn.Module):
    def __init__(
        self,
90
        in_shape=(480, 960),
91
92
93
94
95
96
        out_shape=(721, 1440),
        grid_in="equiangular",
        grid_out="equiangular",
        inp_chans=2,
        out_chans=2,
        kernel_shape=[3, 4],
97
        basis_type="piecewise linear",
98
99
        groups=1,
        bias=False,
100
        upsample_sht=False
101
102
103
    ):
        super().__init__()

104
105
106
107
108
109
110
        # set up upsampling
        if upsample_sht:
            self.sht = RealSHT(*in_shape, grid=grid_in).float()
            self.isht = InverseRealSHT(*out_shape, lmax=self.sht.lmax, mmax=self.sht.mmax, grid=grid_out).float()
            self.upsample = nn.Sequential(self.sht, self.isht)
        else:
            self.upsample = ResampleS2(*in_shape, *out_shape, grid_in=grid_in, grid_out=grid_out)
111
112

        # set up DISCO convolution
113
        self.conv = DiscreteContinuousConvS2(
114
115
116
117
118
            inp_chans,
            out_chans,
            in_shape=out_shape,
            out_shape=out_shape,
            kernel_shape=kernel_shape,
119
            basis_type=basis_type,
120
121
122
123
            grid_in=grid_out,
            grid_out=grid_out,
            groups=groups,
            bias=False,
124
            theta_cutoff=4.0 * torch.pi / float(in_shape[0] - 1),
125
126
127
128
129
130
131
        )

    def forward(self, x):
        dtype = x.dtype

        with amp.autocast(device_type="cuda", enabled=False):
            x = x.float()
132
            x = self.upsample(x)
133
            x = self.conv(x)
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
            x = x.to(dtype=dtype)

        return x


class SphericalNeuralOperatorBlock(nn.Module):
    """
    Helper module for a single SFNO/FNO block. Can use both FFTs and SHTs to represent either FNO or SFNO blocks.
    """

    def __init__(
        self,
        forward_transform,
        inverse_transform,
        input_dim,
        output_dim,
        conv_type="local",
        mlp_ratio=2.0,
        drop_rate=0.0,
        drop_path=0.0,
154
        act_layer=nn.GELU,
155
        norm_layer=nn.Identity,
156
157
        inner_skip="none",
        outer_skip="identity",
158
        use_mlp=True,
Boris Bonev's avatar
Boris Bonev committed
159
        disco_kernel_shape=[3, 4],
160
        disco_basis_type="piecewise linear",
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    ):
        super().__init__()

        if act_layer == nn.Identity:
            gain_factor = 1.0
        else:
            gain_factor = 2.0

        if inner_skip == "linear" or inner_skip == "identity":
            gain_factor /= 2.0

        # convolution layer
        if conv_type == "local":
            self.local_conv = DiscreteContinuousConvS2(
                input_dim,
                output_dim,
                in_shape=(forward_transform.nlat, forward_transform.nlon),
                out_shape=(inverse_transform.nlat, inverse_transform.nlon),
                kernel_shape=disco_kernel_shape,
180
                basis_type=disco_basis_type,
181
182
183
                grid_in=forward_transform.grid,
                grid_out=inverse_transform.grid,
                bias=False,
184
                theta_cutoff=4.0 * (disco_kernel_shape[0] + 1) * torch.pi / float(inverse_transform.nlat - 1),
185
186
            )
        elif conv_type == "global":
187
            self.global_conv = SpectralConvS2(forward_transform, inverse_transform, input_dim, output_dim, gain=gain_factor, bias=False)
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
        else:
            raise ValueError(f"Unknown convolution type {conv_type}")

        if inner_skip == "linear":
            self.inner_skip = nn.Conv2d(input_dim, output_dim, 1, 1)
            nn.init.normal_(self.inner_skip.weight, std=math.sqrt(gain_factor / input_dim))
        elif inner_skip == "identity":
            assert input_dim == output_dim
            self.inner_skip = nn.Identity()
        elif inner_skip == "none":
            pass
        else:
            raise ValueError(f"Unknown skip connection type {inner_skip}")

        # first normalisation layer
        self.norm0 = norm_layer()

        # dropout
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

        gain_factor = 1.0
        if outer_skip == "linear" or inner_skip == "identity":
            gain_factor /= 2.0

        if use_mlp == True:
            mlp_hidden_dim = int(output_dim * mlp_ratio)
            self.mlp = MLP(
                in_features=output_dim,
                out_features=input_dim,
                hidden_features=mlp_hidden_dim,
                act_layer=act_layer,
                drop_rate=drop_rate,
                checkpointing=False,
                gain=gain_factor,
            )

        if outer_skip == "linear":
            self.outer_skip = nn.Conv2d(input_dim, input_dim, 1, 1)
            torch.nn.init.normal_(self.outer_skip.weight, std=math.sqrt(gain_factor / input_dim))
        elif outer_skip == "identity":
            assert input_dim == output_dim
            self.outer_skip = nn.Identity()
        elif outer_skip == "none":
            pass
        else:
            raise ValueError(f"Unknown skip connection type {outer_skip}")

        # second normalisation layer
        self.norm1 = norm_layer()

    def forward(self, x):

        residual = x

        if hasattr(self, "global_conv"):
            x, _ = self.global_conv(x)
        elif hasattr(self, "local_conv"):
            x = self.local_conv(x)

        x = self.norm0(x)

        if hasattr(self, "inner_skip"):
            x = x + self.inner_skip(residual)

        if hasattr(self, "mlp"):
            x = self.mlp(x)

        x = self.norm1(x)

        x = self.drop_path(x)

        if hasattr(self, "outer_skip"):
            x = x + self.outer_skip(residual)

        return x


class LocalSphericalNeuralOperatorNet(nn.Module):
    """
267
268
269
270
    LocalSphericalNeuralOperator module. A spherical neural operator which uses both local and global integral
    operators to accureately model both types of solution operators [1]. The architecture is based on the Spherical
    Fourier Neural Operator [2] and improves upon it with local integral operators in both the Neural Operator blocks,
    as well as in the encoder and decoders.
271
272

    Parameters
273
    -----------
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
    img_shape : tuple, optional
        Shape of the input channels, by default (128, 256)
    kernel_shape: tuple, int
    scale_factor : int, optional
        Scale factor to use, by default 3
    in_chans : int, optional
        Number of input channels, by default 3
    out_chans : int, optional
        Number of output channels, by default 3
    embed_dim : int, optional
        Dimension of the embeddings, by default 256
    num_layers : int, optional
        Number of layers in the network, by default 4
    activation_function : str, optional
        Activation function to use, by default "gelu"
    encoder_kernel_shape : int, optional
        size of the encoder kernel
Boris Bonev's avatar
Boris Bonev committed
291
292
    filter_basis_type: Optional[str]: str, optional
        filter basis type
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
    use_mlp : int, optional
        Whether to use MLPs in the SFNO blocks, by default True
    mlp_ratio : int, optional
        Ratio of MLP to use, by default 2.0
    drop_rate : float, optional
        Dropout rate, by default 0.0
    drop_path_rate : float, optional
        Dropout path rate, by default 0.0
    normalization_layer : str, optional
        Type of normalization layer to use ("layer_norm", "instance_norm", "none"), by default "instance_norm"
    hard_thresholding_fraction : float, optional
        Fraction of hard thresholding (frequency cutoff) to apply, by default 1.0
    big_skip : bool, optional
        Whether to add a single large skip connection, by default True
    pos_embed : bool, optional
        Whether to use positional embedding, by default True
309
310
    upsample_sht : bool, optional
        Use SHT upsampling if true, else linear interpolation
311

312
313
    Example
    -----------
314
    >>> model = LocalSphericalNeuralOperator(
315
316
317
318
319
320
321
322
323
    ...         img_shape=(128, 256),
    ...         scale_factor=4,
    ...         in_chans=2,
    ...         out_chans=2,
    ...         embed_dim=16,
    ...         num_layers=4,
    ...         use_mlp=True,)
    >>> model(torch.randn(1, 2, 128, 256)).shape
    torch.Size([1, 2, 128, 256])
324
325
326
327
328
329
330
331
332
333
334

    References
    -----------
    .. [1] Liu-Schiaffini M., Berner J., Bonev B., Kurth T., Azizzadenesheli K., Anandkumar A.;
        "Neural Operators with Localized Integral and Differential Kernels" (2024).
        ICML 2024, https://arxiv.org/pdf/2402.16845.

    .. [2] Bonev B., Kurth T., Hundt C., Pathak, J., Baust M., Kashinath K., Anandkumar A.;
        "Spherical Fourier Neural Operators: Learning Stable Dynamics on the Sphere" (2023).
        ICML 2023, https://arxiv.org/abs/2306.03838.

335
336
337
338
339
340
    """

    def __init__(
        self,
        img_size=(128, 256),
        grid="equiangular",
341
        grid_internal="legendre-gauss",
342
        scale_factor=3,
343
344
345
346
        in_chans=3,
        out_chans=3,
        embed_dim=256,
        num_layers=4,
347
        activation_function="gelu",
348
349
        kernel_shape=[3, 4],
        encoder_kernel_shape=[3, 4],
Boris Bonev's avatar
Boris Bonev committed
350
        filter_basis_type="piecewise linear",
351
352
353
354
355
356
357
358
359
        use_mlp=True,
        mlp_ratio=2.0,
        drop_rate=0.0,
        drop_path_rate=0.0,
        normalization_layer="none",
        hard_thresholding_fraction=1.0,
        use_complex_kernels=True,
        big_skip=False,
        pos_embed=False,
360
        upsample_sht=False,
361
362
363
364
365
    ):
        super().__init__()

        self.img_size = img_size
        self.grid = grid
366
        self.grid_internal = grid_internal
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
        self.scale_factor = scale_factor
        self.in_chans = in_chans
        self.out_chans = out_chans
        self.embed_dim = embed_dim
        self.num_layers = num_layers
        self.encoder_kernel_shape = encoder_kernel_shape
        self.hard_thresholding_fraction = hard_thresholding_fraction
        self.normalization_layer = normalization_layer
        self.use_mlp = use_mlp
        self.big_skip = big_skip

        # activation function
        if activation_function == "relu":
            self.activation_function = nn.ReLU
        elif activation_function == "gelu":
            self.activation_function = nn.GELU
        # for debugging purposes
        elif activation_function == "identity":
            self.activation_function = nn.Identity
        else:
            raise ValueError(f"Unknown activation function {activation_function}")

389
        # compute downsampled image size. We assume that the latitude-grid includes both poles
390
        self.h = (self.img_size[0] - 1) // scale_factor + 1
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
        self.w = self.img_size[1] // scale_factor

        # dropout
        self.pos_drop = nn.Dropout(p=drop_rate) if drop_rate > 0.0 else nn.Identity()
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, self.num_layers)]

        # pick norm layer
        if self.normalization_layer == "layer_norm":
            norm_layer0 = partial(nn.LayerNorm, normalized_shape=(self.img_size[0], self.img_size[1]), eps=1e-6)
            norm_layer1 = partial(nn.LayerNorm, normalized_shape=(self.h, self.w), eps=1e-6)
        elif self.normalization_layer == "instance_norm":
            norm_layer0 = partial(nn.InstanceNorm2d, num_features=self.embed_dim, eps=1e-6, affine=True, track_running_stats=False)
            norm_layer1 = partial(nn.InstanceNorm2d, num_features=self.embed_dim, eps=1e-6, affine=True, track_running_stats=False)
        elif self.normalization_layer == "none":
            norm_layer0 = nn.Identity
            norm_layer1 = norm_layer0
        else:
            raise NotImplementedError(f"Error, normalization {self.normalization_layer} not implemented.")

        if pos_embed == "latlon" or pos_embed == True:
            self.pos_embed = nn.Parameter(torch.zeros(1, self.embed_dim, self.h, self.w))
            nn.init.constant_(self.pos_embed, 0.0)
        elif pos_embed == "lat":
            self.pos_embed = nn.Parameter(torch.zeros(1, self.embed_dim, self.h, 1))
            nn.init.constant_(self.pos_embed, 0.0)
        elif pos_embed == "const":
            self.pos_embed = nn.Parameter(torch.zeros(1, self.embed_dim, 1, 1))
            nn.init.constant_(self.pos_embed, 0.0)
        else:
            self.pos_embed = None

        # encoder
Boris Bonev's avatar
Boris Bonev committed
423
424
425
        self.encoder = DiscreteContinuousEncoder(
            in_shape=self.img_size,
            out_shape=(self.h, self.w),
426
            grid_in=grid,
427
            grid_out=grid_internal,
Boris Bonev's avatar
Boris Bonev committed
428
429
430
431
432
            inp_chans=self.in_chans,
            out_chans=self.embed_dim,
            kernel_shape=self.encoder_kernel_shape,
            basis_type=filter_basis_type,
            groups=1,
433
434
435
            bias=False,
        )

436
437
438
439
440
441
        # compute the modes for the sht
        modes_lat = self.h
        # due to some spectral artifacts with cufft, we substract one mode here
        modes_lon = (self.w // 2 + 1) - 1

        modes_lat = modes_lon = int(min(modes_lat, modes_lon) * self.hard_thresholding_fraction)
442

443
444
        self.trans = RealSHT(self.h, self.w, lmax=modes_lat, mmax=modes_lon, grid=grid_internal).float()
        self.itrans = InverseRealSHT(self.h, self.w, lmax=modes_lat, mmax=modes_lon, grid=grid_internal).float()
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

        self.blocks = nn.ModuleList([])
        for i in range(self.num_layers):
            first_layer = i == 0
            last_layer = i == self.num_layers - 1

            if first_layer:
                norm_layer = norm_layer1
            elif last_layer:
                norm_layer = norm_layer0
            else:
                norm_layer = norm_layer1

            block = SphericalNeuralOperatorBlock(
                self.trans,
                self.itrans,
                self.embed_dim,
                self.embed_dim,
                conv_type="global" if i % 2 == 0 else "local",
                mlp_ratio=mlp_ratio,
                drop_rate=drop_rate,
                drop_path=dpr[i],
                act_layer=self.activation_function,
                norm_layer=norm_layer,
                use_mlp=use_mlp,
                disco_kernel_shape=kernel_shape,
Boris Bonev's avatar
Boris Bonev committed
471
                disco_basis_type=filter_basis_type,
472
473
474
475
476
477
            )

            self.blocks.append(block)

        # decoder
        self.decoder = DiscreteContinuousDecoder(
478
            in_shape=(self.h, self.w),
479
            out_shape=self.img_size,
480
            grid_in=grid_internal,
481
482
483
484
            grid_out=grid,
            inp_chans=self.embed_dim,
            out_chans=self.out_chans,
            kernel_shape=self.encoder_kernel_shape,
Boris Bonev's avatar
Boris Bonev committed
485
            basis_type=filter_basis_type,
486
487
            groups=1,
            bias=False,
488
            upsample_sht=upsample_sht
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
        )

        # # residual prediction
        # if self.big_skip:
        #     self.residual_transform = nn.Conv2d(self.out_chans, self.in_chans, 1, bias=False)
        #     self.residual_transform.weight.is_shared_mp = ["spatial"]
        #     self.residual_transform.weight.sharded_dims_mp = [None, None, None, None]
        #     scale = math.sqrt(0.5 / self.in_chans)
        #     nn.init.normal_(self.residual_transform.weight, mean=0.0, std=scale)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {"pos_embed", "cls_token"}

    def forward_features(self, x):
        x = self.pos_drop(x)

        for blk in self.blocks:
            x = blk(x)

        return x

    def forward(self, x):
        if self.big_skip:
            residual = x

        x = self.encoder(x)

        if self.pos_embed is not None:
            x = x + self.pos_embed

        x = self.forward_features(x)

        x = self.decoder(x)

        if self.big_skip:
            # x = x + self.residual_transform(residual)
            x = x + residual

        return x