distributed_resample.py 9.17 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

from typing import List, Tuple, Union, Optional
import math
import numpy as np

import torch
import torch.nn as nn

from torch_harmonics.quadrature import _precompute_latitudes
from torch_harmonics.distributed import polar_group_size, azimuth_group_size, distributed_transpose_azimuth, distributed_transpose_polar
from torch_harmonics.distributed import polar_group_rank, azimuth_group_rank
from torch_harmonics.distributed import compute_split_shapes


class DistributedResampleS2(nn.Module):
    def __init__(
        self,
        nlat_in: int,
        nlon_in: int,
        nlat_out: int,
        nlon_out: int,
        grid_in: Optional[str] = "equiangular",
        grid_out: Optional[str] = "equiangular",
        mode: Optional[str] = "bilinear",
    ):

        super().__init__()

        # currently only bilinear is supported
Thorsten Kurth's avatar
Thorsten Kurth committed
60
        if mode in ["bilinear", "bilinear-spherical"]:
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
            self.mode = mode
        else:
            raise NotImplementedError(f"unknown interpolation mode {mode}")

        self.nlat_in, self.nlon_in = nlat_in, nlon_in
        self.nlat_out, self.nlon_out = nlat_out, nlon_out

        self.grid_in = grid_in
        self.grid_out = grid_out

        # get the comms grid:
        self.comm_size_polar = polar_group_size()
        self.comm_rank_polar = polar_group_rank()
        self.comm_size_azimuth = azimuth_group_size()
        self.comm_rank_azimuth = azimuth_group_rank()

        # compute splits: is this correct even when expanding the poles?
        self.lat_in_shapes = compute_split_shapes(self.nlat_in, self.comm_size_polar)
        self.lon_in_shapes = compute_split_shapes(self.nlon_in, self.comm_size_azimuth)
        self.lat_out_shapes = compute_split_shapes(self.nlat_out, self.comm_size_polar)
        self.lon_out_shapes = compute_split_shapes(self.nlon_out, self.comm_size_azimuth)

        # for upscaling the latitudes we will use interpolation
        self.lats_in, _ = _precompute_latitudes(nlat_in, grid=grid_in)
        self.lons_in = np.linspace(0, 2 * math.pi, nlon_in, endpoint=False)
        self.lats_out, _ = _precompute_latitudes(nlat_out, grid=grid_out)
        self.lons_out = np.linspace(0, 2 * math.pi, nlon_out, endpoint=False)

        # in the case where some points lie outside of the range spanned by lats_in,
        # we need to expand the solution to the poles before interpolating
        self.expand_poles = (self.lats_out > self.lats_in[-1]).any() or (self.lats_out < self.lats_in[0]).any()
        if self.expand_poles:
            self.lats_in = np.insert(self.lats_in, 0, 0.0)
            self.lats_in = np.append(self.lats_in, np.pi)

        # prepare the interpolation by computing indices to the left and right of each output latitude
        lat_idx = np.searchsorted(self.lats_in, self.lats_out, side="right") - 1
        # make sure that we properly treat the last point if they coincide with the pole
        lat_idx = np.where(self.lats_out == self.lats_in[-1], lat_idx - 1, lat_idx)

        # lat_idx = np.where(self.lats_out > self.lats_in[-1], lat_idx - 1, lat_idx)
        # lat_idx = np.where(self.lats_out < self.lats_in[0], 0, lat_idx)

        # compute the interpolation weights along the latitude
        lat_weights = torch.from_numpy((self.lats_out - self.lats_in[lat_idx]) / np.diff(self.lats_in)[lat_idx]).float()
        lat_weights = lat_weights.unsqueeze(-1)

        # convert to tensor
        lat_idx = torch.LongTensor(lat_idx)

        # register buffers
        self.register_buffer("lat_idx", lat_idx, persistent=False)
        self.register_buffer("lat_weights", lat_weights, persistent=False)

        # get left and right indices but this time make sure periodicity in the longitude is handled
        lon_idx_left = np.searchsorted(self.lons_in, self.lons_out, side="right") - 1
        lon_idx_right = np.where(self.lons_out >= self.lons_in[-1], np.zeros_like(lon_idx_left), lon_idx_left + 1)

        # get the difference
        diff = self.lons_in[lon_idx_right] - self.lons_in[lon_idx_left]
        diff = np.where(diff < 0.0, diff + 2 * math.pi, diff)
        lon_weights = torch.from_numpy((self.lons_out - self.lons_in[lon_idx_left]) / diff).float()

        # convert to tensor
        lon_idx_left = torch.LongTensor(lon_idx_left)
        lon_idx_right = torch.LongTensor(lon_idx_right)

        # register buffers
        self.register_buffer("lon_idx_left", lon_idx_left, persistent=False)
        self.register_buffer("lon_idx_right", lon_idx_right, persistent=False)
        self.register_buffer("lon_weights", lon_weights, persistent=False)

    def extra_repr(self):
        r"""
        Pretty print module
        """
        return f"in_shape={(self.nlat_in, self.nlon_in)}, out_shape={(self.nlat_out, self.nlon_out)}"

    def _upscale_longitudes(self, x: torch.Tensor):
        # do the interpolation
Thorsten Kurth's avatar
Thorsten Kurth committed
141
142
143
144
145
        if self.mode == "bilinear":
            x = torch.lerp(x[..., self.lon_idx_left], x[..., self.lon_idx_right], self.lon_weights)
        else:
            omega = x[..., self.lon_idx_right] - x[..., self.lon_idx_left]
            somega = torch.sin(omega)
146
147
            start_prefac = torch.where(somega > 1e-4, torch.sin((1.0 - self.lon_weights) * omega) / somega, (1.0 - self.lon_weights))
            end_prefac = torch.where(somega > 1e-4, torch.sin(self.lon_weights * omega) / somega, self.lon_weights)
Thorsten Kurth's avatar
Thorsten Kurth committed
148
149
            x = start_prefac * x[..., self.lon_idx_left] + end_prefac * x[..., self.lon_idx_right]

150
151
152
153
154
155
156
157
158
159
160
161
        return x

    def _expand_poles(self, x: torch.Tensor):
        repeats = [1 for _ in x.shape]
        repeats[-1] = x.shape[-1]
        x_north = x[..., 0:1, :].mean(dim=-1, keepdim=True).repeat(*repeats)
        x_south = x[..., -1:, :].mean(dim=-1, keepdim=True).repeat(*repeats)
        x = torch.concatenate((x_north, x, x_south), dim=-2)
        return x

    def _upscale_latitudes(self, x: torch.Tensor):
        # do the interpolation
Thorsten Kurth's avatar
Thorsten Kurth committed
162
163
164
165
166
        if self.mode == "bilinear":
            x = torch.lerp(x[..., self.lat_idx, :], x[..., self.lat_idx + 1, :], self.lat_weights)
        else:
            omega = x[..., self.lat_idx + 1, :] - x[..., self.lat_idx, :]
            somega = torch.sin(omega)
167
168
            start_prefac = torch.where(somega > 1e-4, torch.sin((1.0 - self.lat_weights) * omega) / somega, (1.0 - self.lat_weights))
            end_prefac = torch.where(somega > 1e-4, torch.sin(self.lat_weights * omega) / somega, self.lat_weights)
Thorsten Kurth's avatar
Thorsten Kurth committed
169
170
            x = start_prefac * x[..., self.lat_idx, :] + end_prefac * x[..., self.lat_idx + 1, :]

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
        return x

    def forward(self, x: torch.Tensor):

        # transpose data so that h is local, and channels are split
        num_chans = x.shape[-3]

        # h and w is split. First we make w local by transposing into channel dim
        if self.comm_size_polar > 1:
            channels_shapes = compute_split_shapes(num_chans, self.comm_size_polar)
            x = distributed_transpose_polar.apply(x, (-3, -2), self.lat_in_shapes)

        # expand poles if requested
        if self.expand_poles:
            x = self._expand_poles(x)

        # upscaling
        x = self._upscale_latitudes(x)

        # now, transpose back
        if self.comm_size_polar > 1:
            x = distributed_transpose_polar.apply(x, (-2, -3), channels_shapes)

        # now, transpose in w:
        if self.comm_size_azimuth > 1:
            channels_shapes = compute_split_shapes(num_chans, self.comm_size_azimuth)
            x = distributed_transpose_azimuth.apply(x, (-3, -1), self.lon_in_shapes)

        # upscale
        x = self._upscale_longitudes(x)

        # transpose back
        if self.comm_size_azimuth > 1:
            x = distributed_transpose_azimuth.apply(x, (-1, -3), channels_shapes)

        return x