convolution.py 20.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

Boris Bonev's avatar
Boris Bonev committed
32
import abc
33
from typing import List, Tuple, Union, Optional
Boris Bonev's avatar
Boris Bonev committed
34
from warnings import warn
35
36
37
38
39
40
41
42

import math

import torch
import torch.nn as nn

from functools import partial

Boris Bonev's avatar
Boris Bonev committed
43
from torch_harmonics.quadrature import _precompute_grid, _precompute_latitudes
Boris Bonev's avatar
Boris Bonev committed
44
45
from torch_harmonics._disco_convolution import _disco_s2_contraction_torch, _disco_s2_transpose_contraction_torch
from torch_harmonics._disco_convolution import _disco_s2_contraction_cuda, _disco_s2_transpose_contraction_cuda
46
from torch_harmonics.filter_basis import get_filter_basis
47

48
# import custom C++/CUDA extensions if available
Boris Bonev's avatar
Boris Bonev committed
49
try:
50
    from disco_helpers import preprocess_psi
Boris Bonev's avatar
Boris Bonev committed
51
    import disco_cuda_extension
52

Boris Bonev's avatar
Boris Bonev committed
53
54
55
56
57
58
    _cuda_extension_available = True
except ImportError as err:
    disco_cuda_extension = None
    _cuda_extension_available = False


59
def _normalize_convolution_tensor_s2(
60
    psi_idx, psi_vals, in_shape, out_shape, kernel_size, quad_weights, transpose_normalization=False, basis_norm_mode="mean", merge_quadrature=False, eps=1e-9
61
):
Boris Bonev's avatar
Boris Bonev committed
62
    """
63
64
65
66
    Discretely normalizes the convolution tensor and pre-applies quadrature weights. Supports the following three normalization modes:
    - "none": No normalization is applied.
    - "individual": for each output latitude and filter basis function the filter is numerically integrated over the sphere and normalized so that it yields 1.
    - "mean": the norm is computed for each output latitude and then averaged over the output latitudes. Each basis function is then normalized by this mean.
Boris Bonev's avatar
Boris Bonev committed
67
68
    """

69
70
    # reshape the indices implicitly to be ikernel, out_shape[0], in_shape[0], in_shape[1]
    idx = torch.stack([psi_idx[0], psi_idx[1], psi_idx[2] // in_shape[1], psi_idx[2] % in_shape[1]], dim=0)
Boris Bonev's avatar
Boris Bonev committed
71

72
73
    # getting indices for adressing kernels, input and output latitudes
    ikernel = idx[0]
Boris Bonev's avatar
Boris Bonev committed
74
75

    if transpose_normalization:
76
77
78
79
80
        ilat_out = idx[2]
        ilat_in = idx[1]
        # here we are deliberately swapping input and output shapes to handle transpose normalization with the same code
        nlat_out = in_shape[0]
        correction_factor = out_shape[1] / in_shape[1]
Boris Bonev's avatar
Boris Bonev committed
81
    else:
82
83
84
85
86
87
88
89
90
        ilat_out = idx[1]
        ilat_in = idx[2]
        nlat_out = out_shape[0]

    # get the quadrature weights
    q = quad_weights[ilat_in].reshape(-1)

    # buffer to store intermediate values
    vnorm = torch.zeros(kernel_size, nlat_out)
91
    support = torch.zeros(kernel_size, nlat_out)
92
93
94
95
96
97
98
99

    # loop through dimensions to compute the norms
    for ik in range(kernel_size):
        for ilat in range(nlat_out):

            # find indices corresponding to the given output latitude and kernel basis function
            iidx = torch.argwhere((ikernel == ik) & (ilat_out == ilat))

100
101
102
            # compute the 1-norm
            # vnorm[ik, ilat] = torch.sqrt(torch.sum(psi_vals[iidx].abs().pow(2) * q[iidx]))
            vnorm[ik, ilat] = torch.sum(psi_vals[iidx].abs() * q[iidx])
103

104
105
106
107
            # compute the support
            support[ik, ilat] = torch.sum(q[iidx])


108
109
110
111
112
113
114
115
116
117
    # loop over values and renormalize
    for ik in range(kernel_size):
        for ilat in range(nlat_out):

            iidx = torch.argwhere((ikernel == ik) & (ilat_out == ilat))

            if basis_norm_mode == "individual":
                val = vnorm[ik, ilat]
            elif basis_norm_mode == "mean":
                val = vnorm[ik, :].mean()
118
119
            elif basis_norm_mode == "support":
                val = support[ik, ilat]
120
121
122
123
124
            elif basis_norm_mode == "none":
                val = 1.0
            else:
                raise ValueError(f"Unknown basis normalization mode {basis_norm_mode}.")

125
126
            psi_vals[iidx] = psi_vals[iidx] / (val + eps)

127
            if merge_quadrature:
128
                psi_vals[iidx] = psi_vals[iidx] * q[iidx]
129
130
131
132


    if transpose_normalization and merge_quadrature:
        psi_vals = psi_vals / correction_factor
Boris Bonev's avatar
Boris Bonev committed
133
134
135
136
137

    return psi_vals


def _precompute_convolution_tensor_s2(
138
139
    in_shape,
    out_shape,
140
    filter_basis,
141
142
143
    grid_in="equiangular",
    grid_out="equiangular",
    theta_cutoff=0.01 * math.pi,
144
    theta_eps = 1e-3,
145
    transpose_normalization=False,
146
    basis_norm_mode="mean",
147
    merge_quadrature=False,
Boris Bonev's avatar
Boris Bonev committed
148
):
149
150
151
    """
    Precomputes the rotated filters at positions $R^{-1}_j \omega_i = R^{-1}_j R_i \nu = Y(-\theta_j)Z(\phi_i - \phi_j)Y(\theta_j)\nu$.
    Assumes a tensorized grid on the sphere with an equidistant sampling in longitude as described in Ocampo et al.
152
153
154
155
156
    The output tensor has shape kernel_shape x nlat_out x (nlat_in * nlon_in).

    The rotation of the Euler angles uses the YZY convention, which applied to the northpole $(0,0,1)^T$ yields
    $$
    Y(\alpha) Z(\beta) Y(\gamma) n =
Boris Bonev's avatar
Boris Bonev committed
157
        {\begin{bmatrix}
158
159
160
161
162
            \cos(\gamma)\sin(\alpha) + \cos(\alpha)\cos(\beta)\sin(\gamma) \\
            \sin(\beta)\sin(\gamma) \\
            \cos(\alpha)\cos(\gamma)-\cos(\beta)\sin(\alpha)\sin(\gamma)
        \end{bmatrix}}
    $$
163
164
165
166
167
    """

    assert len(in_shape) == 2
    assert len(out_shape) == 2

168
    kernel_size = filter_basis.kernel_size
169
170
171
172

    nlat_in, nlon_in = in_shape
    nlat_out, nlon_out = out_shape

173
    # precompute input and output grids
Boris Bonev's avatar
Boris Bonev committed
174
    lats_in, win = _precompute_latitudes(nlat_in, grid=grid_in)
175
    lats_in = torch.from_numpy(lats_in)
Boris Bonev's avatar
Boris Bonev committed
176
    lats_out, wout = _precompute_latitudes(nlat_out, grid=grid_out)
177
    lats_out = torch.from_numpy(lats_out)
178
179

    # compute the phi differences
180
    # It's imporatant to not include the 2 pi point in the longitudes, as it is equivalent to lon=0
181
    lons_in = torch.linspace(0, 2 * math.pi, nlon_in + 1, dtype=torch.float64)[:-1]
182

183
184
    # compute quadrature weights and merge them into the convolution tensor.
    # These quadrature integrate to 1 over the sphere.
185
    if transpose_normalization:
186
        quad_weights = torch.from_numpy(wout).reshape(-1, 1) / nlon_in / 2.0
187
    else:
188
189
190
191
        quad_weights = torch.from_numpy(win).reshape(-1, 1) / nlon_in / 2.0

    # effective theta cutoff if multiplied with a fudge factor to avoid aliasing with grid width (especially near poles)
    theta_cutoff_eff = (1.0 + theta_eps) * theta_cutoff
192

193
194
    out_idx = []
    out_vals = []
195
    for t in range(nlat_out):
196
        # the last angle has a negative sign as it is a passive rotation, which rotates the filter around the y-axis
Boris Bonev's avatar
Boris Bonev committed
197
        alpha = -lats_out[t]
198
199
        beta = lons_in
        gamma = lats_in.reshape(-1, 1)
200
201

        # compute cartesian coordinates of the rotated position
202
203
204
        # This uses the YZY convention of Euler angles, where the last angle (alpha) is a passive rotation,
        # and therefore applied with a negative sign
        x = torch.cos(alpha) * torch.cos(beta) * torch.sin(gamma) + torch.cos(gamma) * torch.sin(alpha)
205
        y = torch.sin(beta) * torch.sin(gamma)
206
        z = -torch.cos(beta) * torch.sin(alpha) * torch.sin(gamma) + torch.cos(alpha) * torch.cos(gamma)
Boris Bonev's avatar
Boris Bonev committed
207

208
        # normalization is important to avoid NaNs when arccos and atan are applied
209
        # this can otherwise lead to spurious artifacts in the solution
Boris Bonev's avatar
Boris Bonev committed
210
        norm = torch.sqrt(x * x + y * y + z * z)
211
212
213
214
        x = x / norm
        y = y / norm
        z = z / norm

Boris Bonev's avatar
Boris Bonev committed
215
        # compute spherical coordinates, where phi needs to fall into the [0, 2pi) range
216
        theta = torch.arccos(z)
217
218
        phi = torch.arctan2(y, x)
        phi = torch.where(phi < 0.0, phi + 2 * torch.pi, phi)
219
220

        # find the indices where the rotated position falls into the support of the kernel
221
        iidx, vals = filter_basis.compute_support_vals(theta, phi, r_cutoff=theta_cutoff_eff)
222
223
224
225
226

        # add the output latitude and reshape such that psi has dimensions kernel_shape x nlat_out x (nlat_in*nlon_in)
        idx = torch.stack([iidx[:, 0], t * torch.ones_like(iidx[:, 0]), iidx[:, 1] * nlon_in + iidx[:, 2]], dim=0)

        # append indices and values to the COO datastructure
227
228
229
230
        out_idx.append(idx)
        out_vals.append(vals)

    # concatenate the indices and values
231
232
    out_idx = torch.cat(out_idx, dim=-1)
    out_vals = torch.cat(out_vals, dim=-1)
233

234
    out_vals = _normalize_convolution_tensor_s2(
235
236
237
238
239
240
241
242
243
        out_idx,
        out_vals,
        in_shape,
        out_shape,
        kernel_size,
        quad_weights,
        transpose_normalization=transpose_normalization,
        basis_norm_mode=basis_norm_mode,
        merge_quadrature=merge_quadrature,
244
    )
Boris Bonev's avatar
Boris Bonev committed
245

246
247
248
    out_idx = out_idx.contiguous()
    out_vals = out_vals.to(dtype=torch.float32).contiguous()

Boris Bonev's avatar
Boris Bonev committed
249
    return out_idx, out_vals
Boris Bonev's avatar
Boris Bonev committed
250
251
252
253


class DiscreteContinuousConv(nn.Module, metaclass=abc.ABCMeta):
    """
254
    Abstract base class for discrete-continuous convolutions
Boris Bonev's avatar
Boris Bonev committed
255
256
257
258
259
260
261
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_shape: Union[int, List[int]],
262
        basis_type: Optional[str] = "piecewise linear",
Boris Bonev's avatar
Boris Bonev committed
263
264
265
266
267
        groups: Optional[int] = 1,
        bias: Optional[bool] = True,
    ):
        super().__init__()

268
        self.kernel_shape = kernel_shape
Boris Bonev's avatar
Boris Bonev committed
269

270
        # get the filter basis functions
271
        self.filter_basis = get_filter_basis(kernel_shape=kernel_shape, basis_type=basis_type)
Boris Bonev's avatar
Boris Bonev committed
272
273
274
275
276
277
278
279
280
281

        # groups
        self.groups = groups

        # weight tensor
        if in_channels % self.groups != 0:
            raise ValueError("Error, the number of input channels has to be an integer multiple of the group size")
        if out_channels % self.groups != 0:
            raise ValueError("Error, the number of output channels has to be an integer multiple of the group size")
        self.groupsize = in_channels // self.groups
Boris Bonev's avatar
Boris Bonev committed
282
        scale = math.sqrt(1.0 / self.groupsize / self.kernel_size)
Boris Bonev's avatar
Boris Bonev committed
283
284
285
286
287
288
289
        self.weight = nn.Parameter(scale * torch.randn(out_channels, self.groupsize, self.kernel_size))

        if bias:
            self.bias = nn.Parameter(torch.zeros(out_channels))
        else:
            self.bias = None

290
291
292
293
    @property
    def kernel_size(self):
        return self.filter_basis.kernel_size

Boris Bonev's avatar
Boris Bonev committed
294
295
296
297
298
299
    @abc.abstractmethod
    def forward(self, x: torch.Tensor):
        raise NotImplementedError


class DiscreteContinuousConvS2(DiscreteContinuousConv):
300
    """
301
    Discrete-continuous (DISCO) convolutions on the 2-Sphere as described in [1].
302
303
304
305
306
307
308
309
310
311
312

    [1] Ocampo, Price, McEwen, Scalable and equivariant spherical CNNs by discrete-continuous (DISCO) convolutions, ICLR (2023), arXiv:2209.13603
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        in_shape: Tuple[int],
        out_shape: Tuple[int],
        kernel_shape: Union[int, List[int]],
313
        basis_type: Optional[str] = "piecewise linear",
314
        basis_norm_mode: Optional[str] = "mean",
315
316
317
318
319
320
        groups: Optional[int] = 1,
        grid_in: Optional[str] = "equiangular",
        grid_out: Optional[str] = "equiangular",
        bias: Optional[bool] = True,
        theta_cutoff: Optional[float] = None,
    ):
321
        super().__init__(in_channels, out_channels, kernel_shape, basis_type, groups, bias)
322
323
324
325

        self.nlat_in, self.nlon_in = in_shape
        self.nlat_out, self.nlon_out = out_shape

326
327
328
        # make sure the p-shift works by checking that longitudes are divisible
        assert self.nlon_in % self.nlon_out == 0

Boris Bonev's avatar
Boris Bonev committed
329
        # heuristic to compute theta cutoff based on the bandlimit of the input field and overlaps of the basis functions
330
        if theta_cutoff is None:
Boris Bonev's avatar
Boris Bonev committed
331
            theta_cutoff = torch.pi / float(self.nlat_out - 1)
332
333
334
335

        if theta_cutoff <= 0.0:
            raise ValueError("Error, theta_cutoff has to be positive.")

Boris Bonev's avatar
Boris Bonev committed
336
        idx, vals = _precompute_convolution_tensor_s2(
337
338
339
340
341
342
343
344
345
            in_shape,
            out_shape,
            self.filter_basis,
            grid_in=grid_in,
            grid_out=grid_out,
            theta_cutoff=theta_cutoff,
            transpose_normalization=False,
            basis_norm_mode=basis_norm_mode,
            merge_quadrature=True,
Boris Bonev's avatar
Boris Bonev committed
346
347
348
349
350
351
        )

        # sort the values
        ker_idx = idx[0, ...].contiguous()
        row_idx = idx[1, ...].contiguous()
        col_idx = idx[2, ...].contiguous()
352
        vals = vals.contiguous()
Boris Bonev's avatar
Boris Bonev committed
353

354
355
356
357
358
359
        if _cuda_extension_available:
            # preprocessed data-structure for GPU kernel
            roff_idx = preprocess_psi(self.kernel_size, out_shape[0], ker_idx, row_idx, col_idx, vals).contiguous()
            self.register_buffer("psi_roff_idx", roff_idx, persistent=False)

        # save all datastructures
Boris Bonev's avatar
Boris Bonev committed
360
361
362
        self.register_buffer("psi_ker_idx", ker_idx, persistent=False)
        self.register_buffer("psi_row_idx", row_idx, persistent=False)
        self.register_buffer("psi_col_idx", col_idx, persistent=False)
Boris Bonev's avatar
Boris Bonev committed
363
        self.register_buffer("psi_vals", vals, persistent=False)
364

365
366
367
368
    def extra_repr(self):
        r"""
        Pretty print module
        """
369
        return f"in_shape={(self.nlat_in, self.nlon_in)}, out_shape={(self.nlat_out, self.nlon_out)}, in_chans={self.groupsize * self.groups}, out_chans={self.weight.shape[0]}, filter_basis={self.filter_basis}, kernel_shape={self.kernel_shape}, groups={self.groups}"
370

Boris Bonev's avatar
Boris Bonev committed
371
372
373
374
    @property
    def psi_idx(self):
        return torch.stack([self.psi_ker_idx, self.psi_row_idx, self.psi_col_idx], dim=0).contiguous()

Boris Bonev's avatar
Boris Bonev committed
375
376
377
    def get_psi(self):
        psi = torch.sparse_coo_tensor(self.psi_idx, self.psi_vals, size=(self.kernel_size, self.nlat_out, self.nlat_in * self.nlon_in)).coalesce()
        return psi
378

Boris Bonev's avatar
Boris Bonev committed
379
    def forward(self, x: torch.Tensor) -> torch.Tensor:
380

Boris Bonev's avatar
Boris Bonev committed
381
382
383
384
        if x.is_cuda and _cuda_extension_available:
            x = _disco_s2_contraction_cuda(
                x, self.psi_roff_idx, self.psi_ker_idx, self.psi_row_idx, self.psi_col_idx, self.psi_vals, self.kernel_size, self.nlat_out, self.nlon_out
            )
385
        else:
Boris Bonev's avatar
Boris Bonev committed
386
387
388
            if x.is_cuda:
                warn("couldn't find CUDA extension, falling back to slow PyTorch implementation")
            psi = self.get_psi()
Boris Bonev's avatar
Boris Bonev committed
389
            x = _disco_s2_contraction_torch(x, psi, self.nlon_out)
390
391
392
393
394
395

        # extract shape
        B, C, K, H, W = x.shape
        x = x.reshape(B, self.groups, self.groupsize, K, H, W)

        # do weight multiplication
Thorsten Kurth's avatar
Thorsten Kurth committed
396
        out = torch.einsum("bgckxy,gock->bgoxy", x, self.weight.reshape(self.groups, -1, self.weight.shape[1], self.weight.shape[2])).contiguous()
Boris Bonev's avatar
Boris Bonev committed
397
        out = out.reshape(B, -1, H, W)
398
399
400
401
402
403
404

        if self.bias is not None:
            out = out + self.bias.reshape(1, -1, 1, 1)

        return out


Boris Bonev's avatar
Boris Bonev committed
405
class DiscreteContinuousConvTransposeS2(DiscreteContinuousConv):
406
    """
407
    Discrete-continuous (DISCO) transpose convolutions on the 2-Sphere as described in [1].
408
409
410
411
412
413
414
415
416
417
418

    [1] Ocampo, Price, McEwen, Scalable and equivariant spherical CNNs by discrete-continuous (DISCO) convolutions, ICLR (2023), arXiv:2209.13603
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        in_shape: Tuple[int],
        out_shape: Tuple[int],
        kernel_shape: Union[int, List[int]],
419
        basis_type: Optional[str] = "piecewise linear",
420
        basis_norm_mode: Optional[str] = "mean",
421
422
423
424
425
426
        groups: Optional[int] = 1,
        grid_in: Optional[str] = "equiangular",
        grid_out: Optional[str] = "equiangular",
        bias: Optional[bool] = True,
        theta_cutoff: Optional[float] = None,
    ):
427
        super().__init__(in_channels, out_channels, kernel_shape, basis_type, groups, bias)
428
429
430
431

        self.nlat_in, self.nlon_in = in_shape
        self.nlat_out, self.nlon_out = out_shape

432
433
434
        # make sure the p-shift works by checking that longitudes are divisible
        assert self.nlon_out % self.nlon_in == 0

435
436
        # bandlimit
        if theta_cutoff is None:
Boris Bonev's avatar
Boris Bonev committed
437
            theta_cutoff = torch.pi / float(self.nlat_in - 1)
438
439
440
441

        if theta_cutoff <= 0.0:
            raise ValueError("Error, theta_cutoff has to be positive.")

442
        # switch in_shape and out_shape since we want the transpose convolution
Boris Bonev's avatar
Boris Bonev committed
443
        idx, vals = _precompute_convolution_tensor_s2(
444
445
446
447
448
449
450
451
452
            out_shape,
            in_shape,
            self.filter_basis,
            grid_in=grid_out,
            grid_out=grid_in,
            theta_cutoff=theta_cutoff,
            transpose_normalization=True,
            basis_norm_mode=basis_norm_mode,
            merge_quadrature=True,
Boris Bonev's avatar
Boris Bonev committed
453
454
455
456
457
458
        )

        # sort the values
        ker_idx = idx[0, ...].contiguous()
        row_idx = idx[1, ...].contiguous()
        col_idx = idx[2, ...].contiguous()
459
        vals = vals.contiguous()
Boris Bonev's avatar
Boris Bonev committed
460

461
462
463
464
465
466
        if _cuda_extension_available:
            # preprocessed data-structure for GPU kernel
            roff_idx = preprocess_psi(self.kernel_size, in_shape[0], ker_idx, row_idx, col_idx, vals).contiguous()
            self.register_buffer("psi_roff_idx", roff_idx, persistent=False)

        # save all datastructures
Boris Bonev's avatar
Boris Bonev committed
467
468
469
        self.register_buffer("psi_ker_idx", ker_idx, persistent=False)
        self.register_buffer("psi_row_idx", row_idx, persistent=False)
        self.register_buffer("psi_col_idx", col_idx, persistent=False)
Boris Bonev's avatar
Boris Bonev committed
470
        self.register_buffer("psi_vals", vals, persistent=False)
471

472
473
474
475
    def extra_repr(self):
        r"""
        Pretty print module
        """
476
        return f"in_shape={(self.nlat_in, self.nlon_in)}, out_shape={(self.nlat_out, self.nlon_out)}, in_chans={self.groupsize * self.groups}, out_chans={self.weight.shape[0]}, filter_basis={self.filter_basis}, kernel_shape={self.kernel_shape}, groups={self.groups}"
477

Boris Bonev's avatar
Boris Bonev committed
478
479
480
481
482
483
    @property
    def psi_idx(self):
        return torch.stack([self.psi_ker_idx, self.psi_row_idx, self.psi_col_idx], dim=0).contiguous()

    def get_psi(self, semi_transposed: bool = False):
        if semi_transposed:
484
485
486
487
488
489
            # we do a semi-transposition to faciliate the computation
            tout = self.psi_idx[2] // self.nlon_out
            pout = self.psi_idx[2] % self.nlon_out
            # flip the axis of longitudes
            pout = self.nlon_out - 1 - pout
            tin = self.psi_idx[1]
Boris Bonev's avatar
Boris Bonev committed
490
            idx = torch.stack([self.psi_idx[0], tout, tin * self.nlon_out + pout], dim=0)
491
492
493
            psi = torch.sparse_coo_tensor(idx, self.psi_vals, size=(self.kernel_size, self.nlat_out, self.nlat_in * self.nlon_out)).coalesce()
        else:
            psi = torch.sparse_coo_tensor(self.psi_idx, self.psi_vals, size=(self.kernel_size, self.nlat_in, self.nlat_out * self.nlon_out)).coalesce()
Boris Bonev's avatar
Boris Bonev committed
494

Boris Bonev's avatar
Boris Bonev committed
495
        return psi
496

Boris Bonev's avatar
Boris Bonev committed
497
    def forward(self, x: torch.Tensor) -> torch.Tensor:
498
        # extract shape
Boris Bonev's avatar
Boris Bonev committed
499
        B, C, H, W = x.shape
500
501
502
        x = x.reshape(B, self.groups, self.groupsize, H, W)

        # do weight multiplication
Thorsten Kurth's avatar
Thorsten Kurth committed
503
        x = torch.einsum("bgcxy,gock->bgokxy", x, self.weight.reshape(self.groups, -1, self.weight.shape[1], self.weight.shape[2])).contiguous()
Boris Bonev's avatar
Boris Bonev committed
504
        x = x.reshape(B, -1, x.shape[-3], H, W)
505

Boris Bonev's avatar
Boris Bonev committed
506
507
508
509
        if x.is_cuda and _cuda_extension_available:
            out = _disco_s2_transpose_contraction_cuda(
                x, self.psi_roff_idx, self.psi_ker_idx, self.psi_row_idx, self.psi_col_idx, self.psi_vals, self.kernel_size, self.nlat_out, self.nlon_out
            )
510
        else:
Boris Bonev's avatar
Boris Bonev committed
511
512
513
            if x.is_cuda:
                warn("couldn't find CUDA extension, falling back to slow PyTorch implementation")
            psi = self.get_psi(semi_transposed=True)
Boris Bonev's avatar
Boris Bonev committed
514
            out = _disco_s2_transpose_contraction_torch(x, psi, self.nlon_out)
515
516
517
518
519

        if self.bias is not None:
            out = out + self.bias.reshape(1, -1, 1, 1)

        return out