plotting.py 4.04 KB
Newer Older
1
2
3
4
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
Boris Bonev's avatar
Boris Bonev committed
5
#
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import numpy as np
import matplotlib.pyplot as plt
34
import cartopy
35
36
import cartopy.crs as ccrs

37
38

def plot_sphere(data, fig=None, cmap="RdBu", title=None, colorbar=False, coastlines=False, gridlines=False, central_latitude=0, central_longitude=0, lon=None, lat=None, **kwargs):
39
40
41
42
43
44
    if fig == None:
        fig = plt.figure()

    nlat = data.shape[-2]
    nlon = data.shape[-1]
    if lon is None:
45
        lon = np.linspace(0, 2 * np.pi, nlon)
46
    if lat is None:
47
        lat = np.linspace(np.pi / 2.0, -np.pi / 2.0, nlat)
48
49
50
51
52
53
    Lon, Lat = np.meshgrid(lon, lat)

    proj = ccrs.Orthographic(central_longitude=central_longitude, central_latitude=central_latitude)
    # proj = ccrs.Mollweide(central_longitude=central_longitude)

    ax = fig.add_subplot(projection=proj)
54
55
    Lon = Lon * 180 / np.pi
    Lat = Lat * 180 / np.pi
56
57

    # contour data over the map.
58
59
    im = ax.pcolormesh(Lon, Lat, data, cmap=cmap, transform=ccrs.PlateCarree(), antialiased=False, **kwargs)
    if coastlines:
60
61
62
        ax.add_feature(cartopy.feature.COASTLINE, edgecolor="white", facecolor="none", linewidth=1.5)
    if gridlines:
        gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=False, linewidth=1.5, color="gray", alpha=0.6, linestyle="--")
63
    if colorbar:
64
        plt.colorbar(im, extend="both")
65
66
67
68
    plt.title(title, y=1.05)

    return im

69
70

def plot_data(data, fig=None, cmap="RdBu", title=None, colorbar=False, coastlines=False, gridlines=False, central_longitude=0, lon=None, lat=None, **kwargs):
71
72
    if fig == None:
        fig = plt.figure()
Boris Bonev's avatar
Boris Bonev committed
73

74
75
76
    nlat = data.shape[-2]
    nlon = data.shape[-1]
    if lon is None:
77
        lon = np.linspace(0, 2 * np.pi, nlon)
78
    if lat is None:
79
        lat = np.linspace(np.pi / 2.0, -np.pi / 2.0, nlat)
80
81
    Lon, Lat = np.meshgrid(lon, lat)

82
83
84
85
    proj = ccrs.PlateCarree(central_longitude=central_longitude)
    # proj = ccrs.Mollweide(central_longitude=central_longitude)

    ax = fig.add_subplot(projection=proj)
86
87
    Lon = Lon * 180 / np.pi
    Lat = Lat * 180 / np.pi
Boris Bonev's avatar
Boris Bonev committed
88

89
90
91
    # contour data over the map.
    im = ax.pcolormesh(Lon, Lat, data, cmap=cmap, transform=ccrs.PlateCarree(), antialiased=False, **kwargs)
    if coastlines:
92
93
94
        ax.add_feature(cartopy.feature.COASTLINE, edgecolor="white", facecolor="none", linewidth=1.5)
    if gridlines:
        gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=False, linewidth=1.5, color="gray", alpha=0.6, linestyle="--")
95
    if colorbar:
96
        plt.colorbar(im, extend="both")
97
98
    plt.title(title, y=1.05)

99
    return im