sht.py 16.2 KB
Newer Older
Boris Bonev's avatar
Boris Bonev committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# 
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import numpy as np
import torch
import torch.nn as nn
import torch.fft

from .quadrature import *
from .legendre import *
from .distributed import copy_to_parallel_region, scatter_to_parallel_region, reduce_from_parallel_region


class RealSHT(nn.Module):
    """
    Defines a module for computing the forward (real-valued) SHT.
    Precomputes Legendre Gauss nodes, weights and associated Legendre polynomials on these nodes.
    The SHT is applied to the last two dimensions of the input

    [1] Schaeffer, N. Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, G3: Geochemistry, Geophysics, Geosystems.
    [2] Wang, B., Wang, L., Xie, Z.; Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids; Adv Comput Math.
    """

    def __init__(self, nlat, nlon, lmax=None, mmax=None, grid="lobatto", norm="ortho", csphase=True):
        """
        Initializes the SHT Layer, precomputing the necessary quadrature weights

        Parameters:
        nlat: input grid resolution in the latitudinal direction
        nlon: input grid resolution in the longitudinal direction
        grid: grid in the latitude direction (for now only tensor product grids are supported)
        """

        super().__init__()

        self.nlat = nlat
        self.nlon = nlon
        self.grid = grid
        self.norm = norm
        self.csphase = csphase

        # TODO: include assertions regarding the dimensions

        # compute quadrature points
        if self.grid == "legendre-gauss":
            cost, w = legendre_gauss_weights(nlat, -1, 1)
            self.lmax = lmax or self.nlat
        elif self.grid == "lobatto":
            cost, w = lobatto_weights(nlat, -1, 1)
            self.lmax = lmax or self.nlat-1
        elif self.grid == "equiangular":
            cost, w = clenshaw_curtiss_weights(nlat, -1, 1)
            # cost, w = fejer2_weights(nlat, -1, 1)
            self.lmax = lmax or self.nlat
        else:
            raise(ValueError("Unknown quadrature mode"))

        # apply cosine transform and flip them
        tq = np.flip(np.arccos(cost))

        # determine the dimensions 
        self.mmax = mmax or self.nlon // 2 + 1

        # combine quadrature weights with the legendre weights
        weights = torch.from_numpy(w)
        pct = precompute_legpoly(self.mmax, self.lmax, tq, norm=self.norm, csphase=self.csphase)
        weights = torch.einsum('mlk,k->mlk', pct, weights)

        # shard the weights along n, because we want to be distributed in spectral space:
        weights = scatter_to_parallel_region(weights, dim=1)
        self.lmax_local = weights.shape[1]

        # remember quadrature weights
        self.register_buffer('weights', weights, persistent=False)

    def extra_repr(self):
        """
        Pretty print module
        """
        return f'nlat={self.nlat}, nlon={self.nlon},\n lmax={self.lmax}, mmax={self.mmax},\n grid={self.grid}, csphase={self.csphase}'

    def forward(self, x: torch.Tensor):

        assert(x.shape[-2] == self.nlat)
        assert(x.shape[-1] == self.nlon)

        # apply real fft in the longitudinal direction
        x = 2.0 * torch.pi * torch.fft.rfft(x, dim=-1, norm="forward")
        
        # do the Legendre-Gauss quadrature
        x = torch.view_as_real(x)
        
        # distributed contraction: fork
        x = copy_to_parallel_region(x)
        out_shape = list(x.size())
        out_shape[-3] = self.lmax_local
        out_shape[-2] = self.mmax
        xout = torch.zeros(out_shape, dtype=x.dtype, device=x.device)
        
        # contraction
        xout[..., 0] = torch.einsum('...km,mlk->...lm', x[..., :self.mmax, 0], self.weights )
        xout[..., 1] = torch.einsum('...km,mlk->...lm', x[..., :self.mmax, 1], self.weights )
        x = torch.view_as_complex(xout)
        
        return x

class InverseRealSHT(nn.Module):
    """
    Defines a module for computing the inverse (real-valued) SHT.
    Precomputes Legendre Gauss nodes, weights and associated Legendre polynomials on these nodes.
    nlat, nlon: Output dimensions
    lmax, mmax: Input dimensions (spherical coefficients). For convenience, these are inferred from the output dimensions

    [1] Schaeffer, N. Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, G3: Geochemistry, Geophysics, Geosystems.
    [2] Wang, B., Wang, L., Xie, Z.; Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids; Adv Comput Math.
    """

    def __init__(self, nlat, nlon, lmax=None, mmax=None, grid="lobatto", norm="ortho", csphase=True):

        super().__init__()

        self.nlat = nlat
        self.nlon = nlon
        self.grid = grid
        self.norm = norm
        self.csphase = csphase

        # compute quadrature points
        if self.grid == "legendre-gauss":
            cost, _ = legendre_gauss_weights(nlat, -1, 1)
            self.lmax = lmax or self.nlat
        elif self.grid == "lobatto":
            cost, _ = lobatto_weights(nlat, -1, 1)
            self.lmax = lmax or self.nlat-1
        elif self.grid == "equiangular":
            cost, _ = clenshaw_curtiss_weights(nlat, -1, 1)
            self.lmax = lmax or self.nlat
        else:
            raise(ValueError("Unknown quadrature mode"))

        # apply cosine transform and flip them
        t = np.flip(np.arccos(cost))

        # determine the dimensions 
        self.mmax = mmax or self.nlon // 2 + 1

        pct = precompute_legpoly(self.mmax, self.lmax, t, norm=self.norm, inverse=True, csphase=self.csphase)

        # shard the pct along the n dim
        pct = scatter_to_parallel_region(pct, dim=1)
        self.lmax_local = pct.shape[1]

        self.register_buffer('pct', pct, persistent=False)

    def extra_repr(self):
        """
        Pretty print module
        """
        return f'nlat={self.nlat}, nlon={self.nlon},\n lmax={self.lmax}, mmax={self.mmax},\n grid={self.grid}, csphase={self.csphase}'

    def forward(self, x: torch.Tensor):

        assert(x.shape[-2] == self.lmax_local)
        assert(x.shape[-1] == self.mmax)
        
        # Evaluate associated Legendre functions on the output nodes
        x = torch.view_as_real(x)
        
        rl = torch.einsum('...lm, mlk->...km', x[..., 0], self.pct )
        im = torch.einsum('...lm, mlk->...km', x[..., 1], self.pct )
        xs = torch.stack((rl, im), -1)

        # distributed contraction: join
        xs = reduce_from_parallel_region(xs)

        # apply the inverse (real) FFT
        x = torch.view_as_complex(xs)
        x = torch.fft.irfft(x, n=self.nlon, dim=-1, norm="forward")

        return x


class RealVectorSHT(nn.Module):
    """
    Defines a module for computing the forward (real) vector SHT.
    Precomputes Legendre Gauss nodes, weights and associated Legendre polynomials on these nodes.
    The SHT is applied to the last three dimensions of the input.

    [1] Schaeffer, N. Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, G3: Geochemistry, Geophysics, Geosystems.
    [2] Wang, B., Wang, L., Xie, Z.; Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids; Adv Comput Math.
    """

    def __init__(self, nlat, nlon, lmax=None, mmax=None, grid="lobatto", norm="ortho", csphase=True):
        """
        Initializes the vector SHT Layer, precomputing the necessary quadrature weights

        Parameters:
        nlat: input grid resolution in the latitudinal direction
        nlon: input grid resolution in the longitudinal direction
        grid: type of grid the data lives on
        """

        super().__init__()

        self.nlat = nlat
        self.nlon = nlon
        self.grid = grid
        self.norm = norm
        self.csphase = csphase

        # compute quadrature points
        if self.grid == "legendre-gauss":
            cost, w = legendre_gauss_weights(nlat, -1, 1)
            self.lmax = lmax or self.nlat
        elif self.grid == "lobatto":
            cost, w = lobatto_weights(nlat, -1, 1)
            self.lmax = lmax or self.nlat-1
        elif self.grid == "equiangular":
            cost, w = clenshaw_curtiss_weights(nlat, -1, 1)
            # cost, w = fejer2_weights(nlat, -1, 1)
            self.lmax = lmax or self.nlat
        else:
            raise(ValueError("Unknown quadrature mode"))

        # apply cosine transform and flip them
        tq = np.flip(np.arccos(cost))

        # determine the dimensions 
        self.mmax = mmax or self.nlon // 2 + 1

        weights = torch.from_numpy(w)
        dpct = precompute_dlegpoly(self.mmax, self.lmax, tq, norm=self.norm, csphase=self.csphase)
        
        # combine integration weights, normalization factor in to one:
        l = torch.arange(0, self.lmax)
        norm_factor = 1. / l / (l+1)
        norm_factor[0] = 1.
        weights = torch.einsum('dmlk,k,l->dmlk', dpct, weights, norm_factor)
        # since the second component is imaginary, we need to take complex conjugation into account
        weights[1] = -1 * weights[1]

        # shard the weights along n, because we want to be distributed in spectral space:
        weights = scatter_to_parallel_region(weights, dim=2)
        self.lmax_local = weights.shape[2]

        # remember quadrature weights
        self.register_buffer('weights', weights, persistent=False)

    def extra_repr(self):
        """
        Pretty print module
        """
        return f'nlat={self.nlat}, nlon={self.nlon},\n lmax={self.lmax}, mmax={self.mmax},\n grid={self.grid}, csphase={self.csphase}'

    def forward(self, x: torch.Tensor):

        assert(len(x.shape) >= 3)

        # apply real fft in the longitudinal direction
        x = 2.0 * torch.pi * torch.fft.rfft(x, dim=-1, norm="forward")
        
        # do the Legendre-Gauss quadrature
        x = torch.view_as_real(x)
        
        # distributed contraction: fork
        x = copy_to_parallel_region(x)
        out_shape = list(x.size())
        out_shape[-3] = self.lmax_local
        out_shape[-2] = self.mmax
        xout = torch.zeros(out_shape, dtype=x.dtype, device=x.device)

        # contraction - spheroidal component
        # real component
        xout[..., 0, :, :, 0] =   torch.einsum('...km,mlk->...lm', x[..., 0, :, :self.mmax, 0], self.weights[0]) \
                                - torch.einsum('...km,mlk->...lm', x[..., 1, :, :self.mmax, 1], self.weights[1]) 

        # iamg component
        xout[..., 0, :, :, 1] =   torch.einsum('...km,mlk->...lm', x[..., 0, :, :self.mmax, 1], self.weights[0]) \
                                + torch.einsum('...km,mlk->...lm', x[..., 1, :, :self.mmax, 0], self.weights[1]) 

        # contraction - toroidal component
        # real component
        xout[..., 1, :, :, 0] = - torch.einsum('...km,mlk->...lm', x[..., 0, :, :self.mmax, 1], self.weights[1]) \
                                - torch.einsum('...km,mlk->...lm', x[..., 1, :, :self.mmax, 0], self.weights[0]) 
        # imag component
        xout[..., 1, :, :, 1] =   torch.einsum('...km,mlk->...lm', x[..., 0, :, :self.mmax, 0], self.weights[1]) \
                                - torch.einsum('...km,mlk->...lm', x[..., 1, :, :self.mmax, 1], self.weights[0]) 

        return torch.view_as_complex(xout)


class InverseRealVectorSHT(nn.Module):
    """
    Defines a module for computing the inverse (real-valued) vector SHT.
    Precomputes Legendre Gauss nodes, weights and associated Legendre polynomials on these nodes.
    
    [1] Schaeffer, N. Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations, G3: Geochemistry, Geophysics, Geosystems.
    [2] Wang, B., Wang, L., Xie, Z.; Accurate calculation of spherical and vector spherical harmonic expansions via spectral element grids; Adv Comput Math.
    """
    def __init__(self, nlat, nlon, lmax=None, mmax=None, grid="lobatto", norm="ortho", csphase=True):

        super().__init__()

        self.nlat = nlat
        self.nlon = nlon
        self.grid = grid
        self.norm = norm
        self.csphase = csphase

        # compute quadrature points
        if self.grid == "legendre-gauss":
            cost, _ = legendre_gauss_weights(nlat, -1, 1)
            self.lmax = lmax or self.nlat
        elif self.grid == "lobatto":
            cost, _ = lobatto_weights(nlat, -1, 1)
            self.lmax = lmax or self.nlat-1
        elif self.grid == "equiangular":
            cost, _ = clenshaw_curtiss_weights(nlat, -1, 1)
            self.lmax = lmax or self.nlat
        else:
            raise(ValueError("Unknown quadrature mode"))

        # apply cosine transform and flip them
        t = np.flip(np.arccos(cost))

        # determine the dimensions 
        self.mmax = mmax or self.nlon // 2 + 1

        dpct = precompute_dlegpoly(self.mmax, self.lmax, t, norm=self.norm, inverse=True, csphase=self.csphase)

        # shard the pct along the n dim
        dpct = scatter_to_parallel_region(dpct, dim=2)
        self.lmax_local = dpct.shape[2]
        
        self.register_buffer('dpct', dpct, persistent=False)

    def extra_repr(self):
        """
        Pretty print module
        """
        return f'nlat={self.nlat}, nlon={self.nlon},\n lmax={self.lmax}, mmax={self.mmax},\n grid={self.grid}, csphase={self.csphase}'

    def forward(self, x: torch.Tensor):

        assert(x.shape[-2] == self.lmax_local)
        assert(x.shape[-1] == self.mmax)
        
        # Evaluate associated Legendre functions on the output nodes
        x = torch.view_as_real(x)

        # contraction - spheroidal component
        # real component
        srl =   torch.einsum('...lm,mlk->...km', x[..., 0, :, :, 0], self.dpct[0]) \
              - torch.einsum('...lm,mlk->...km', x[..., 1, :, :, 1], self.dpct[1]) 
        # iamg component
        sim =   torch.einsum('...lm,mlk->...km', x[..., 0, :, :, 1], self.dpct[0]) \
              + torch.einsum('...lm,mlk->...km', x[..., 1, :, :, 0], self.dpct[1]) 

        # contraction - toroidal component
        # real component
        trl = - torch.einsum('...lm,mlk->...km', x[..., 0, :, :, 1], self.dpct[1]) \
              - torch.einsum('...lm,mlk->...km', x[..., 1, :, :, 0], self.dpct[0]) 
        # imag component
        tim =   torch.einsum('...lm,mlk->...km', x[..., 0, :, :, 0], self.dpct[1]) \
              - torch.einsum('...lm,mlk->...km', x[..., 1, :, :, 1], self.dpct[0]) 
        
        # reassemble
        s = torch.stack((srl, sim), -1)
        t = torch.stack((trl, tim), -1)
        xs = torch.stack((s, t), -4)

        # distributed contraction: join
        xs = reduce_from_parallel_region(xs)

        # apply the inverse (real) FFT
        x = torch.view_as_complex(xs)
        x = torch.fft.irfft(x, n=self.nlon, dim=-1, norm="forward")

        return x