test_distributed_resample.py 13.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2025 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import os
import unittest
from parameterized import parameterized

import torch
import torch.nn.functional as F
import torch.distributed as dist
Boris Bonev's avatar
Boris Bonev committed
39
import torch_harmonics as th
40
41
42
43
import torch_harmonics.distributed as thd


class TestDistributedResampling(unittest.TestCase):
apaaris's avatar
apaaris committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
    """
    Test the distributed resampling module.
    
    Parameters
    ----------
    nlat_in : int
        Number of latitude points in input
    nlon_in : int
        Number of longitude points in input 
    nlat_out : int
        Number of latitude points in output
    nlon_out : int
        Number of longitude points in output
    batch_size : int
        Batch size
    num_chan : int
        Number of channels
    grid_in : str
        Grid type for input
    grid_out : str
        Grid type for output
    mode : str
        Resampling mode
    tol : float
        Tolerance for numerical equivalence
    verbose : bool
        Whether to print verbose output
    """
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

    @classmethod
    def setUpClass(cls):

        # set up distributed
        cls.world_rank = int(os.getenv("WORLD_RANK", 0))
        cls.grid_size_h = int(os.getenv("GRID_H", 1))
        cls.grid_size_w = int(os.getenv("GRID_W", 1))
        port = int(os.getenv("MASTER_PORT", "29501"))
        master_address = os.getenv("MASTER_ADDR", "localhost")
        cls.world_size = cls.grid_size_h * cls.grid_size_w

        if torch.cuda.is_available():
            if cls.world_rank == 0:
                print("Running test on GPU")
            local_rank = cls.world_rank % torch.cuda.device_count()
            cls.device = torch.device(f"cuda:{local_rank}")
            torch.cuda.set_device(local_rank)
            torch.cuda.manual_seed(333)
            proc_backend = "nccl"
        else:
            if cls.world_rank == 0:
                print("Running test on CPU")
            cls.device = torch.device("cpu")
            proc_backend = "gloo"
        torch.manual_seed(333)

        dist.init_process_group(backend=proc_backend, init_method=f"tcp://{master_address}:{port}", rank=cls.world_rank, world_size=cls.world_size)

        cls.wrank = cls.world_rank % cls.grid_size_w
        cls.hrank = cls.world_rank // cls.grid_size_w

        # now set up the comm groups:
        # set default
        cls.w_group = None
        cls.h_group = None

        # do the init
        wgroups = []
        for w in range(0, cls.world_size, cls.grid_size_w):
            start = w
            end = w + cls.grid_size_w
            wgroups.append(list(range(start, end)))

        if cls.world_rank == 0:
            print("w-groups:", wgroups)
        for grp in wgroups:
            if len(grp) == 1:
                continue
            tmp_group = dist.new_group(ranks=grp)
            if cls.world_rank in grp:
                cls.w_group = tmp_group

        # transpose:
        hgroups = [sorted(list(i)) for i in zip(*wgroups)]

        if cls.world_rank == 0:
            print("h-groups:", hgroups)
        for grp in hgroups:
            if len(grp) == 1:
                continue
            tmp_group = dist.new_group(ranks=grp)
            if cls.world_rank in grp:
                cls.h_group = tmp_group

        if cls.world_rank == 0:
            print(f"Running distributed tests on grid H x W = {cls.grid_size_h} x {cls.grid_size_w}")

        # initializing sht
        thd.init(cls.h_group, cls.w_group)

    @classmethod
    def tearDownClass(cls):
        thd.finalize()
        dist.destroy_process_group(None)

    def _split_helper(self, tensor):
apaaris's avatar
apaaris committed
149
150
151
152
153
154
155
156
157
158
159
160
161
        """
        Split the tensor along the last dimension into chunks along the W dimension, and then along the H dimension.
        
        Parameters
        ----------
        tensor : torch.Tensor
            The tensor to split

        Returns
        -------
        torch.Tensor
            The split tensor
        """
162
163
164
165
166
167
168
169
170
171
172
173
        with torch.no_grad():
            # split in W
            tensor_list_local = thd.split_tensor_along_dim(tensor, dim=-1, num_chunks=self.grid_size_w)
            tensor_local = tensor_list_local[self.wrank]

            # split in H
            tensor_list_local = thd.split_tensor_along_dim(tensor_local, dim=-2, num_chunks=self.grid_size_h)
            tensor_local = tensor_list_local[self.hrank]

        return tensor_local

    def _gather_helper_fwd(self, tensor, B, C, convolution_dist):
apaaris's avatar
apaaris committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
        """
        Gather the tensor along the W and H dimensions.
        
        Parameters
        ----------
        tensor : torch.Tensor
            The tensor to gather
        B : int
            Batch size
        C : int
            Number of channels
        convolution_dist : thd.DistributedResampleS2
            The distributed resampling object

        Returns
        -------
        torch.Tensor
            The gathered tensor
        """
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
        # we need the shapes
        lat_shapes = convolution_dist.lat_out_shapes
        lon_shapes = convolution_dist.lon_out_shapes

        # gather in W
        tensor = tensor.contiguous()
        if self.grid_size_w > 1:
            gather_shapes = [(B, C, lat_shapes[self.hrank], w) for w in lon_shapes]
            olist = [torch.empty(shape, dtype=tensor.dtype, device=tensor.device) for shape in gather_shapes]
            olist[self.wrank] = tensor
            dist.all_gather(olist, tensor, group=self.w_group)
            tensor_gather = torch.cat(olist, dim=-1)
        else:
            tensor_gather = tensor

        # gather in H
        tensor_gather = tensor_gather.contiguous()
        if self.grid_size_h > 1:
            gather_shapes = [(B, C, h, convolution_dist.nlon_out) for h in lat_shapes]
            olist = [torch.empty(shape, dtype=tensor_gather.dtype, device=tensor_gather.device) for shape in gather_shapes]
            olist[self.hrank] = tensor_gather
            dist.all_gather(olist, tensor_gather, group=self.h_group)
            tensor_gather = torch.cat(olist, dim=-2)

        return tensor_gather

    def _gather_helper_bwd(self, tensor, B, C, resampling_dist):
apaaris's avatar
apaaris committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
        """
        Gather the tensor along the W and H dimensions.
        
        Parameters
        ----------
        tensor : torch.Tensor
            The tensor to gather
        B : int
            Batch size
        C : int
            Number of channels
        resampling_dist : thd.DistributedResampleS2
            The distributed resampling object

        Returns
        -------
        torch.Tensor
            The gathered tensor
        """

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
        # we need the shapes
        lat_shapes = resampling_dist.lat_in_shapes
        lon_shapes = resampling_dist.lon_in_shapes

        # gather in W
        if self.grid_size_w > 1:
            gather_shapes = [(B, C, lat_shapes[self.hrank], w) for w in lon_shapes]
            olist = [torch.empty(shape, dtype=tensor.dtype, device=tensor.device) for shape in gather_shapes]
            olist[self.wrank] = tensor
            dist.all_gather(olist, tensor, group=self.w_group)
            tensor_gather = torch.cat(olist, dim=-1)
        else:
            tensor_gather = tensor

        # gather in H
        if self.grid_size_h > 1:
            gather_shapes = [(B, C, h, resampling_dist.nlon_in) for h in lat_shapes]
            olist = [torch.empty(shape, dtype=tensor_gather.dtype, device=tensor_gather.device) for shape in gather_shapes]
            olist[self.hrank] = tensor_gather
            dist.all_gather(olist, tensor_gather, group=self.h_group)
            tensor_gather = torch.cat(olist, dim=-2)

        return tensor_gather

    @parameterized.expand(
        [
Thorsten Kurth's avatar
Thorsten Kurth committed
266
267
268
269
            [64, 128, 128, 256, 32, 8, "equiangular", "equiangular", "bilinear", 1e-7, False],
            [128, 256, 64, 128, 32, 8, "equiangular", "equiangular", "bilinear", 1e-7, False],
            [64, 128, 128, 256, 32, 8, "equiangular", "equiangular", "bilinear-spherical", 1e-7, False],
            [128, 256, 64, 128, 32, 8, "equiangular", "equiangular", "bilinear-spherical", 1e-7, False],
270
271
272
273
            [129, 256, 65, 128, 32, 8, "equiangular", "equiangular", "bilinear", 1e-7, False],
            [65, 128, 129, 256, 32, 8, "equiangular", "equiangular", "bilinear", 1e-7, False],
            [129, 256, 65, 128, 32, 8, "equiangular", "legendre-gauss", "bilinear", 1e-7, False],
            [65, 128, 129, 256, 32, 8, "legendre-gauss", "equiangular", "bilinear", 1e-7, False],
274
275
276
        ]
    )
    def test_distributed_resampling(
Thorsten Kurth's avatar
Thorsten Kurth committed
277
            self, nlat_in, nlon_in, nlat_out, nlon_out, batch_size, num_chan, grid_in, grid_out, mode, tol, verbose
278
    ):
apaaris's avatar
apaaris committed
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
        """
        Test the distributed resampling module.

        Parameters
        ----------
        nlat_in : int
            Number of latitude points in input
        nlon_in : int
            Number of longitude points in input
        nlat_out : int
            Number of latitude points in output
        nlon_out : int
            Number of longitude points in output
        batch_size : int
            Batch size
        num_chan : int
            Number of channels
        grid_in : str
            Grid type for input
        grid_out : str
            Grid type for output
        mode : str
            Resampling mode
        tol : float
            Tolerance for numerical equivalence
        verbose : bool
            Whether to print verbose output
        """
307
308
309
310

        B, C, H, W = batch_size, num_chan, nlat_in, nlon_in

        res_args = dict(
Boris Bonev's avatar
Boris Bonev committed
311
            nlat_in=nlat_in,
312
            nlon_in=nlon_in,
Boris Bonev's avatar
Boris Bonev committed
313
            nlat_out=nlat_out,
314
315
316
            nlon_out=nlon_out,
            grid_in=grid_in,
            grid_out=grid_out,
Thorsten Kurth's avatar
Thorsten Kurth committed
317
            mode=mode,
318
319
320
        )

        # set up handlesD
Boris Bonev's avatar
Boris Bonev committed
321
        res_local = th.ResampleS2(**res_args).to(self.device)
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
        res_dist = thd.DistributedResampleS2(**res_args).to(self.device)

        # create tensors
        inp_full = torch.randn((B, C, H, W), dtype=torch.float32, device=self.device)

        #############################################################
        # local conv
        #############################################################
        # FWD pass
        inp_full.requires_grad = True
        out_full = res_local(inp_full)

        # create grad for backward
        with torch.no_grad():
            # create full grad
            ograd_full = torch.randn_like(out_full)

        # BWD pass
        out_full.backward(ograd_full)
        igrad_full = inp_full.grad.clone()

        #############################################################
        # distributed conv
        #############################################################
        # FWD pass
        inp_local = self._split_helper(inp_full)
        inp_local.requires_grad = True
        out_local = res_dist(inp_local)

        # BWD pass
        ograd_local = self._split_helper(ograd_full)
        out_local = res_dist(inp_local)
        out_local.backward(ograd_local)
        igrad_local = inp_local.grad.clone()

        #############################################################
        # evaluate FWD pass
        #############################################################
        with torch.no_grad():
            out_gather_full = self._gather_helper_fwd(out_local, B, C, res_dist)
            err = torch.mean(torch.norm(out_full - out_gather_full, p="fro", dim=(-1, -2)) / torch.norm(out_full, p="fro", dim=(-1, -2)))
363
            if verbose and (self.world_rank == 0):
364
365
366
367
368
369
370
371
372
373
                print(f"final relative error of output: {err.item()}")
        self.assertTrue(err.item() <= tol)

        #############################################################
        # evaluate BWD pass
        #############################################################
        with torch.no_grad():
            igrad_gather_full = self._gather_helper_bwd(igrad_local, B, C, res_dist)

            err = torch.mean(torch.norm(igrad_full - igrad_gather_full, p="fro", dim=(-1, -2)) / torch.norm(igrad_full, p="fro", dim=(-1, -2)))
Thorsten Kurth's avatar
Thorsten Kurth committed
374
            if verbose and (self.world_rank == 0):
375
376
377
378
379
380
                print(f"final relative error of gradients: {err.item()}")
        self.assertTrue(err.item() <= tol)


if __name__ == "__main__":
    unittest.main()