_disco_convolution.py 8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import math

import torch

Boris Bonev's avatar
Boris Bonev committed
36
37
38
39
40
41
try:
    import disco_cuda_extension
    _cuda_extension_available = True
except ImportError as err:
    disco_cuda_extension = None
    _cuda_extension_available = False
42
43


Boris Bonev's avatar
Boris Bonev committed
44
class _DiscoS2ContractionCuda(torch.autograd.Function):
45
    @staticmethod
Boris Bonev's avatar
Boris Bonev committed
46
47
48
49
50
51
    def forward(ctx, x: torch.Tensor, roff_idx: torch.Tensor, ker_idx: torch.Tensor,
                row_idx: torch.Tensor, col_idx: torch.Tensor, vals: torch.Tensor,
                kernel_size: int, nlat_out: int, nlon_out: int):
        ctx.save_for_backward(roff_idx, ker_idx, row_idx, col_idx, vals)
        ctx.kernel_size = kernel_size
        ctx.nlat_in = x.shape[-2]
52
53
        ctx.nlon_in = x.shape[-1]

Boris Bonev's avatar
Boris Bonev committed
54
        return disco_cuda_extension.forward(x.contiguous(), roff_idx, ker_idx, row_idx, col_idx, vals, kernel_size, nlat_out, nlon_out)
55
56
57

    @staticmethod
    def backward(ctx, grad_output):
Boris Bonev's avatar
Boris Bonev committed
58
59
60
        roff_idx, ker_idx, row_idx, col_idx, vals = ctx.saved_tensors
        grad_input = disco_cuda_extension.backward(grad_output.contiguous(), roff_idx, ker_idx, row_idx, col_idx, vals,
                                         ctx.kernel_size, ctx.nlat_in, ctx.nlon_in)
61

Boris Bonev's avatar
Boris Bonev committed
62
        return grad_input, None, None, None, None, None, None, None, None
63

Boris Bonev's avatar
Boris Bonev committed
64
65

class _DiscoS2TransposeContractionCuda(torch.autograd.Function):
66
    @staticmethod
Boris Bonev's avatar
Boris Bonev committed
67
68
69
70
71
72
    def forward(ctx, x: torch.Tensor, roff_idx: torch.Tensor, ker_idx: torch.Tensor,
                row_idx: torch.Tensor, col_idx: torch.Tensor, vals: torch.Tensor,
                kernel_size: int, nlat_out: int, nlon_out: int):
        ctx.save_for_backward(roff_idx, ker_idx, row_idx, col_idx, vals)
        ctx.kernel_size = kernel_size
        ctx.nlat_in = x.shape[-2]
73
74
        ctx.nlon_in = x.shape[-1]

Boris Bonev's avatar
Boris Bonev committed
75
        return disco_cuda_extension.backward(x.contiguous(), roff_idx, ker_idx, row_idx, col_idx, vals, kernel_size, nlat_out, nlon_out)
76
77
78

    @staticmethod
    def backward(ctx, grad_output):
Boris Bonev's avatar
Boris Bonev committed
79
80
81
        roff_idx, ker_idx, row_idx, col_idx, vals = ctx.saved_tensors
        grad_input = disco_cuda_extension.forward(grad_output.contiguous(), roff_idx, ker_idx, row_idx, col_idx, vals,
                                        ctx.kernel_size, ctx.nlat_in, ctx.nlon_in)
82

Boris Bonev's avatar
Boris Bonev committed
83
        return grad_input, None, None, None, None, None, None, None, None
84

Boris Bonev's avatar
Boris Bonev committed
85
86
87
88
89
90
# CUDA
def _disco_s2_contraction_cuda(x: torch.Tensor, roff_idx: torch.Tensor, ker_idx: torch.Tensor,
                               row_idx: torch.Tensor, col_idx: torch.Tensor, vals: torch.Tensor,
                               kernel_size: int, nlat_out: int, nlon_out: int) -> torch.Tensor:
    return _DiscoS2ContractionCuda.apply(x, roff_idx, ker_idx, row_idx, col_idx, vals,
                                         kernel_size, nlat_out, nlon_out)
91

Boris Bonev's avatar
Boris Bonev committed
92
93
94
95
96
def _disco_s2_transpose_contraction_cuda(x: torch.Tensor, roff_idx: torch.Tensor, ker_idx: torch.Tensor,
                                         row_idx: torch.Tensor, col_idx: torch.Tensor, vals: torch.Tensor,
                                         kernel_size: int, nlat_out: int, nlon_out: int) -> torch.Tensor:
    return _DiscoS2TransposeContractionCuda.apply(x, roff_idx, ker_idx, row_idx, col_idx, vals,
                                                  kernel_size, nlat_out, nlon_out)
97
98
99
100
101
102


def _disco_s2_contraction_torch(x: torch.Tensor, psi: torch.Tensor, nlon_out: int):
    """
    Reference implementation of the custom contraction as described in [1]. This requires repeated
    shifting of the input tensor, which can potentially be costly. For an efficient implementation
Boris Bonev's avatar
Boris Bonev committed
103
    on GPU, make sure to use the custom kernel written in CUDA.
104
105
106
107
108
109
110
111
112
113
    """
    assert len(psi.shape) == 3
    assert len(x.shape) == 4
    psi = psi.to(x.device)

    batch_size, n_chans, nlat_in, nlon_in = x.shape
    kernel_size, nlat_out, _ = psi.shape

    assert psi.shape[-1] == nlat_in * nlon_in
    assert nlon_in % nlon_out == 0
Boris Bonev's avatar
Boris Bonev committed
114
    assert nlon_in >= nlat_out
115
116
    pscale = nlon_in // nlon_out

117
    # add a dummy dimension for nkernel and move the batch and channel dims to the end
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    x = x.reshape(1, batch_size * n_chans, nlat_in, nlon_in).permute(0, 2, 3, 1)
    x = x.expand(kernel_size, -1, -1, -1)

    y = torch.zeros(nlon_out, kernel_size, nlat_out, batch_size * n_chans, device=x.device, dtype=x.dtype)

    for pout in range(nlon_out):
        # sparse contraction with psi
        y[pout] = torch.bmm(psi, x.reshape(kernel_size, nlat_in * nlon_in, -1))
        # we need to repeatedly roll the input tensor to faciliate the shifted multiplication
        x = torch.roll(x, -pscale, dims=2)

    # reshape y back to expose the correct dimensions
    y = y.permute(3, 1, 2, 0).reshape(batch_size, n_chans, kernel_size, nlat_out, nlon_out)

    return y


def _disco_s2_transpose_contraction_torch(x: torch.Tensor, psi: torch.Tensor, nlon_out: int):
    """
    Reference implementation of the custom contraction as described in [1]. This requires repeated
    shifting of the input tensor, which can potentially be costly. For an efficient implementation
Boris Bonev's avatar
Boris Bonev committed
139
    on GPU, make sure to use the custom kernel written in CUDA.
140
141
142
143
144
145
    """
    assert len(psi.shape) == 3
    assert len(x.shape) == 5
    psi = psi.to(x.device)

    batch_size, n_chans, kernel_size, nlat_in, nlon_in = x.shape
146
    kernel_size, nlat_out, n_out = psi.shape
147
148

    assert n_out % nlon_out == 0
Boris Bonev's avatar
Boris Bonev committed
149
    assert nlon_out >= nlon_in
150
151
152
153
    pscale = nlon_out // nlon_in

    # interleave zeros along the longitude dimension to allow for fractional offsets to be considered
    x_ext = torch.zeros(kernel_size, nlat_in, nlon_out, batch_size * n_chans, device=x.device, dtype=x.dtype)
154
    x = x.reshape(batch_size * n_chans, kernel_size, nlat_in, nlon_in).permute(1, 2, 3, 0)
Boris Bonev's avatar
Boris Bonev committed
155

156
157
158
    # x has shape kernel_size x nlat_in x nlon_in x batch_size * n_chans
    # we only need to apoply the nlon stride here, since nlat stride is taken care of by the kernel
    x_ext[:, :, ::pscale, :] = x[...]
159

160
    # create output tensor
161
162
163
164
165
166
167
    y = torch.zeros(kernel_size, nlon_out, nlat_out, batch_size * n_chans, device=x.device, dtype=x.dtype)

    for pout in range(nlon_out):
        # we need to repeatedly roll the input tensor to faciliate the shifted multiplication
        # TODO: double-check why this has to happen first
        x_ext = torch.roll(x_ext, -1, dims=2)
        # sparse contraction with the modified psi
168
        y[:, pout, :, :] = torch.bmm(psi, x_ext.reshape(kernel_size, nlat_in * nlon_out, -1))
169
170

    # sum over the kernel dimension and reshape to the correct output size
171
    y = y.sum(dim=0).permute(2, 1, 0).reshape(batch_size, n_chans, nlat_out, nlon_out).contiguous()
172
173
174

    return y