resampling.py 5.53 KB
Newer Older
Boris Bonev's avatar
Boris Bonev committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

from typing import List, Tuple, Union, Optional
import math
import numpy as np

import torch
import torch.nn as nn

from torch_harmonics.quadrature import _precompute_latitudes


class ResampleS2(nn.Module):
    def __init__(
        self,
        nlat_in: int,
        nlon_in: int,
        nlat_out: int,
        nlon_out: int,
        grid_in: Optional[str] = "equiangular",
        grid_out: Optional[str] = "equiangular",
        mode: Optional[str] = "bilinear",
    ):

        super().__init__()

        # currently only bilinear is supported
        if mode == "bilinear":
            self.mode = mode
        else:
            raise NotImplementedError(f"unknown interpolation mode {mode}")

        self.nlat_in, self.nlon_in = nlat_in, nlon_in
        self.nlat_out, self.nlon_out = nlat_out, nlon_out

        self.grid_in = grid_in
        self.grid_out = grid_out

        # for upscaling the latitudes we will use interpolation
        self.lats_in, _ = _precompute_latitudes(nlat_in, grid=grid_in)
        self.lons_in = np.linspace(0, 2 * math.pi, nlon_in, endpoint=False)
        self.lats_out, _ = _precompute_latitudes(nlat_out, grid=grid_out)
        self.lons_out = np.linspace(0, 2 * math.pi, nlon_out, endpoint=False)

        # prepare the interpolation by computing indices to the left and right of each output latitude
        lat_idx = np.searchsorted(self.lats_in, self.lats_out, side="right") - 1
        # to guarantee everything stays in bounds
        lat_idx = np.where(self.lats_out == self.lats_in[-1], lat_idx - 1, lat_idx)

        # compute the interpolation weights along the latitude
        lat_weights = torch.from_numpy((self.lats_out - self.lats_in[lat_idx]) / np.diff(self.lats_in)[lat_idx]).float()
        lat_weights = lat_weights.unsqueeze(-1)

        # convert to tensor
        lat_idx = torch.LongTensor(lat_idx)

        # register buffers
        self.register_buffer("lat_idx", lat_idx, persistent=False)
        self.register_buffer("lat_weights", lat_weights, persistent=False)

        # get left and right indices but this time make sure periodicity in the longitude is handled
        lon_idx_left = np.searchsorted(self.lons_in, self.lons_out, side="right") - 1
        lon_idx_right = np.where(self.lons_out >= self.lons_in[-1], np.zeros_like(lon_idx_left), lon_idx_left + 1)

        # get the difference
        diff = self.lons_in[lon_idx_right] - self.lons_in[lon_idx_left]
        diff = np.where(diff < 0.0, diff + 2 * math.pi, diff)
        lon_weights = torch.from_numpy((self.lons_out - self.lons_in[lon_idx_left]) / diff).float()

        # convert to tensor
        lon_idx_left = torch.LongTensor(lon_idx_left)
        lon_idx_right = torch.LongTensor(lon_idx_right)

        # register buffers
        self.register_buffer("lon_idx_left", lon_idx_left, persistent=False)
        self.register_buffer("lon_idx_right", lon_idx_right, persistent=False)
        self.register_buffer("lon_weights", lon_weights, persistent=False)

    def extra_repr(self):
        r"""
        Pretty print module
        """
        return f"in_shape={(self.nlat_in, self.nlon_in)}, out_shape={(self.nlat_out, self.nlon_out)}"

    def _upscale_longitudes(self, x: torch.Tensor):
        # do the interpolation
        x = torch.lerp(x[..., self.lon_idx_left], x[..., self.lon_idx_right], self.lon_weights)
        return x

    # old deprecated method with repeat_interleave
    # def _upscale_longitudes(self, x: torch.Tensor):
    #     # for artifact-free upsampling in the longitudinal direction
    #     x = torch.repeat_interleave(x, self.lon_scale_factor, dim=-1)
    #     x = torch.roll(x, - self.lon_shift, dims=-1)
    #     return x

    def _upscale_latitudes(self, x: torch.Tensor):
        # do the interpolation
        x = torch.lerp(x[..., self.lat_idx, :], x[..., self.lat_idx + 1, :], self.lat_weights)
        return x

    def forward(self, x: torch.Tensor):
        x = self._upscale_latitudes(x)
        x = self._upscale_longitudes(x)
        return x