tests.py 7.33 KB
Newer Older
Boris Bonev's avatar
Boris Bonev committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# 
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import unittest
import numpy as np
import torch
from torch_harmonics import *

# try:
#     from tqdm import tqdm
# except:
#     tqdm = lambda x : x

tqdm = lambda x : x

class TestLegendrePolynomials(unittest.TestCase):

    def setUp(self):
        self.cml = lambda m, l : np.sqrt((2*l + 1) / 4 / np.pi) * np.sqrt(np.math.factorial(l-m) / np.math.factorial(l+m))
        self.pml = dict()

        # preparing associated Legendre Polynomials (These include the Condon-Shortley phase)
        # for reference see e.g. https://en.wikipedia.org/wiki/Associated_Legendre_polynomials
        self.pml[(0, 0)] = lambda x : np.ones_like(x)
        self.pml[(0, 1)] = lambda x : x
        self.pml[(1, 1)] = lambda x : - np.sqrt(1. - x**2)
        self.pml[(0, 2)] = lambda x : 0.5 * (3*x**2 - 1)
        self.pml[(1, 2)] = lambda x : - 3 * x * np.sqrt(1. - x**2)
        self.pml[(2, 2)] = lambda x : 3 * (1 - x**2)
        self.pml[(0, 3)] = lambda x : 0.5 * (5*x**3 - 3*x)
        self.pml[(1, 3)] = lambda x : 1.5 * (1 - 5*x**2) * np.sqrt(1. - x**2)
        self.pml[(2, 3)] = lambda x : 15 * x * (1 - x**2)
        self.pml[(3, 3)] = lambda x : -15 * np.sqrt(1. - x**2)**3

        self.lmax = self.mmax = 4

    def test_legendre(self):
        print("Testing computation of associated Legendre polynomials")
        from torch_harmonics.legendre import precompute_legpoly

        TOL = 1e-9

        t = np.linspace(0, np.pi, 100)
        pct = precompute_legpoly(self.mmax, self.lmax, t)

        for l in range(self.lmax):
            for m in range(l+1):
                diff = pct[m, l].numpy() / self.cml(m,l) - self.pml[(m,l)](np.cos(t))
                self.assertTrue(diff.max() <= TOL)
        print("done.")


class TestSphericalHarmonicTransform(unittest.TestCase):

    def __init__(self, testname, norm="ortho"):
        super(TestSphericalHarmonicTransform, self).__init__(testname)  # calling the super class init varies for different python versions.  This works for 2.7
        self.norm = norm
    
    def setUp(self):

        if torch.cuda.is_available():
            print("Running test on GPU")
            self.device = torch.device('cuda')
        else:
            print("Running test on CPU")
            self.device = torch.device('cpu')

        self.batch_size = 128
        self.nlat = 256
        self.nlon = 2*self.nlat

    def test_sht_leggauss(self):
        print(f"Testing real-valued SHT on Legendre-Gauss grid with {self.norm} normalization")

        TOL = 1e-9
        testiters = [1, 2, 4, 8, 16]
        mmax = self.nlat
        lmax = mmax

        sht = RealSHT(self.nlat, self.nlon, mmax=mmax, lmax=lmax, grid="legendre-gauss", norm=self.norm).to(self.device)
        isht = InverseRealSHT(self.nlat, self.nlon, mmax=mmax, lmax=lmax, grid="legendre-gauss", norm=self.norm).to(self.device)

        coeffs = torch.zeros(self.batch_size, lmax, mmax, device=self.device, dtype=torch.complex128)
        coeffs[:, :lmax, :mmax] = torch.randn(self.batch_size, lmax, mmax, device=self.device, dtype=torch.complex128)
        signal = isht(coeffs)
        
        for iter in testiters:
            with self.subTest(i = iter):
                print(f"{iter} iterations of batchsize {self.batch_size}:")

                base = signal

                for _ in tqdm(range(iter)):
                    base = isht(sht(base))
            
                # err = ( torch.norm(base-self.signal, p='fro') / torch.norm(self.signal, p='fro') ).item()
                err = torch.mean(torch.norm(base-signal, p='fro', dim=(-1,-2)) / torch.norm(signal, p='fro', dim=(-1,-2)) ).item()
                print(f"final relative error: {err}")
                self.assertTrue(err <= TOL)

    def test_sht_equiangular(self):
        print(f"Testing real-valued SHT on equiangular grid with {self.norm} normalization")

        TOL = 1e-1
        testiters = [1, 2, 4, 8]
        mmax = self.nlat // 2
        lmax = mmax

        sht = RealSHT(self.nlat, self.nlon, mmax=mmax, lmax=lmax, grid="equiangular", norm=self.norm).to(self.device)
        isht = InverseRealSHT(self.nlat, self.nlon, mmax=mmax, lmax=lmax, grid="equiangular", norm=self.norm).to(self.device)

        coeffs = torch.zeros(self.batch_size, sht.lmax, sht.mmax, device=self.device, dtype=torch.complex128)
        coeffs[:, :lmax, :mmax] = torch.randn(self.batch_size, lmax, mmax, device=self.device, dtype=torch.complex128)
        signal = isht(coeffs)
        
        for iter in testiters:
            with self.subTest(i = iter):
                print(f"{iter} iterations of batchsize {self.batch_size}:")

                base = signal

                for _ in tqdm(range(iter)):
                    base = isht(sht(base))
            
                # err = ( torch.norm(base-self.signal, p='fro') / torch.norm(self.signal, p='fro') ).item()
                err = torch.mean(torch.norm(base-signal, p='fro', dim=(-1,-2)) / torch.norm(signal, p='fro', dim=(-1,-2)) ).item()
                print(f"final relative error: {err}")
                self.assertTrue(err <= TOL)


if __name__ == '__main__':
    sht_test_suite = unittest.TestSuite()
    sht_test_suite.addTest(TestLegendrePolynomials('test_legendre'))
    sht_test_suite.addTest(TestSphericalHarmonicTransform('test_sht_leggauss',    norm="ortho"))
    sht_test_suite.addTest(TestSphericalHarmonicTransform('test_sht_equiangular', norm="ortho"))
    sht_test_suite.addTest(TestSphericalHarmonicTransform('test_sht_leggauss',    norm="four-pi"))
    sht_test_suite.addTest(TestSphericalHarmonicTransform('test_sht_equiangular', norm="four-pi"))
    sht_test_suite.addTest(TestSphericalHarmonicTransform('test_sht_leggauss',    norm="schmidt"))
    sht_test_suite.addTest(TestSphericalHarmonicTransform('test_sht_equiangular', norm="schmidt"))
    unittest.TextTestRunner(verbosity=2).run(sht_test_suite)