Commit b8166f31 authored by rusty1s's avatar rusty1s
Browse files

linting and interface changes

parent cd7dbf25
// Author: Peiyuan Liao (alexander_liao@outlook.com)
//
# pragma once
#pragma once
#include <ATen/ATen.h>
#include <algorithm>
#include <cmath>
#include <vector>
#include <unordered_map>
#include <iomanip>
#include <iostream>
#include <map>
#include <algorithm>
#include <numeric>
#include <iostream>
#include <iomanip>
#include <unordered_map>
#include <vector>
#include <time.h>
template<typename scalar_t>
struct PointCloud
{
std::vector<std::vector<scalar_t>*> pts;
void set(std::vector<scalar_t> new_pts, int dim){
std::vector<std::vector<scalar_t>*> temp(new_pts.size()/dim);
for(size_t i=0; i < new_pts.size(); i++){
if(i%dim == 0){
std::vector<scalar_t>* point = new std::vector<scalar_t>(dim);
for (size_t j = 0; j < (size_t)dim; j++) {
(*point)[j]=new_pts[i+j];
}
temp[i/dim] = point;
}
}
pts = temp;
}
void set_batch(std::vector<scalar_t> new_pts, size_t begin, long size, int dim){
std::vector<std::vector<scalar_t>*> temp(size);
for(size_t i=0; i < (size_t)size; i++){
std::vector<scalar_t>* point = new std::vector<scalar_t>(dim);
for (size_t j = 0; j < (size_t)dim; j++) {
(*point)[j] = new_pts[dim*(begin+i)+j];
}
temp[i] = point;
}
pts = temp;
}
// Must return the number of data points
inline size_t kdtree_get_point_count() const { return pts.size(); }
// Returns the dim'th component of the idx'th point in the class:
inline scalar_t kdtree_get_pt(const size_t idx, const size_t dim) const
{
return (*pts[idx])[dim];
}
// Optional bounding-box computation: return false to default to a standard bbox computation loop.
// Return true if the BBOX was already computed by the class and returned in "bb" so it can be avoided to redo it again.
// Look at bb.size() to find out the expected dimensionality (e.g. 2 or 3 for point clouds)
template <class BBOX>
bool kdtree_get_bbox(BBOX& /* bb */) const { return false; }
template <typename scalar_t> struct PointCloud {
std::vector<std::vector<scalar_t> *> pts;
void set(std::vector<scalar_t> new_pts, int dim) {
std::vector<std::vector<scalar_t> *> temp(new_pts.size() / dim);
for (size_t i = 0; i < new_pts.size(); i++) {
if (i % dim == 0) {
std::vector<scalar_t> *point = new std::vector<scalar_t>(dim);
for (size_t j = 0; j < (size_t)dim; j++) {
(*point)[j] = new_pts[i + j];
}
temp[i / dim] = point;
}
}
pts = temp;
}
void set_batch(std::vector<scalar_t> new_pts, size_t begin, long size,
int dim) {
std::vector<std::vector<scalar_t> *> temp(size);
for (size_t i = 0; i < (size_t)size; i++) {
std::vector<scalar_t> *point = new std::vector<scalar_t>(dim);
for (size_t j = 0; j < (size_t)dim; j++) {
(*point)[j] = new_pts[dim * (begin + i) + j];
}
temp[i] = point;
}
pts = temp;
}
// Must return the number of data points.
inline size_t kdtree_get_point_count() const { return pts.size(); }
// Returns the dim'th component of the idx'th point in the class:
inline scalar_t kdtree_get_pt(const size_t idx, const size_t dim) const {
return (*pts[idx])[dim];
}
// Optional bounding-box computation: return false to default to a standard
// bbox computation loop.
// Return true if the BBOX was already computed by the class and returned in
// "bb" so it can be avoided to redo it again. Look at bb.size() to find out
// the expected dimensionality (e.g. 2 or 3 for point clouds)
template <class BBOX> bool kdtree_get_bbox(BBOX & /* bb */) const {
return false;
}
};
This diff is collapsed.
from typing import Optional
import torch
import numpy as np
@torch.jit.script
def knn(x: torch.Tensor, y: torch.Tensor, k: int,
batch_x: Optional[torch.Tensor] = None,
batch_y: Optional[torch.Tensor] = None,
cosine: bool = False, n_threads: int = 1) -> torch.Tensor:
batch_y: Optional[torch.Tensor] = None, cosine: bool = False,
num_workers: int = 1) -> torch.Tensor:
r"""Finds for each element in :obj:`y` the :obj:`k` nearest points in
:obj:`x`.
......@@ -19,13 +19,18 @@ def knn(x: torch.Tensor, y: torch.Tensor, k: int,
k (int): The number of neighbors.
batch_x (LongTensor, optional): Batch vector
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
node to a specific example. (default: :obj:`None`)
node to a specific example. :obj:`batch_x` needs to be sorted.
(default: :obj:`None`)
batch_y (LongTensor, optional): Batch vector
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^M`, which assigns each
node to a specific example. (default: :obj:`None`)
cosine (boolean, optional): If :obj:`True`, will use the cosine
distance instead of euclidean distance to find nearest neighbors.
(default: :obj:`False`)
node to a specific example. :obj:`batch_y` needs to be sorted.
(default: :obj:`None`)
cosine (boolean, optional): If :obj:`True`, will use the Cosine
distance instead of the Euclidean distance to find nearest
neighbors. (default: :obj:`False`)
num_workers (int): Number of workers to use for computation. Has no
effect in case :obj:`batch_x` or :obj:`batch_y` is not
:obj:`None`, or the input lies on the GPU. (default: :obj:`1`)
:rtype: :class:`LongTensor`
......@@ -44,62 +49,36 @@ def knn(x: torch.Tensor, y: torch.Tensor, k: int,
x = x.view(-1, 1) if x.dim() == 1 else x
y = y.view(-1, 1) if y.dim() == 1 else y
def is_sorted(x):
return (np.diff(x.detach().cpu()) >= 0).all()
if x.is_cuda:
if batch_x is not None:
assert x.size(0) == batch_x.numel()
assert is_sorted(batch_x)
batch_size = int(batch_x.max()) + 1
if batch_x is not None:
assert x.size(0) == batch_x.numel()
batch_size = int(batch_x.max()) + 1
deg = x.new_zeros(batch_size, dtype=torch.long)
deg.scatter_add_(0, batch_x, torch.ones_like(batch_x))
deg = x.new_zeros(batch_size, dtype=torch.long)
deg.scatter_add_(0, batch_x, torch.ones_like(batch_x))
ptr_x = deg.new_zeros(batch_size + 1)
torch.cumsum(deg, 0, out=ptr_x[1:])
else:
ptr_x = torch.tensor([0, x.size(0)], device=x.device)
ptr_x = deg.new_zeros(batch_size + 1)
torch.cumsum(deg, 0, out=ptr_x[1:])
if batch_y is not None:
assert y.size(0) == batch_y.numel()
assert is_sorted(batch_y)
batch_size = int(batch_y.max()) + 1
if batch_y is not None:
assert y.size(0) == batch_y.numel()
batch_size = int(batch_y.max()) + 1
deg = y.new_zeros(batch_size, dtype=torch.long)
deg.scatter_add_(0, batch_y, torch.ones_like(batch_y))
deg = y.new_zeros(batch_size, dtype=torch.long)
deg.scatter_add_(0, batch_y, torch.ones_like(batch_y))
ptr_y = deg.new_zeros(batch_size + 1)
torch.cumsum(deg, 0, out=ptr_y[1:])
else:
ptr_y = torch.tensor([0, y.size(0)], device=y.device)
return torch.ops.torch_cluster.knn(x, y, ptr_x,
ptr_y, k, cosine, n_threads)
ptr_y = deg.new_zeros(batch_size + 1)
torch.cumsum(deg, 0, out=ptr_y[1:])
else:
assert x.dim() == 2
if batch_x is not None:
assert batch_x.dim() == 1
assert is_sorted(batch_x)
assert x.size(0) == batch_x.size(0)
assert y.dim() == 2
if batch_y is not None:
assert batch_y.dim() == 1
assert is_sorted(batch_y)
assert y.size(0) == batch_y.size(0)
assert x.size(1) == y.size(1)
if cosine:
raise NotImplementedError('`cosine` argument not supported on CPU')
ptr_y = torch.tensor([0, y.size(0)], device=y.device)
return torch.ops.torch_cluster.knn(x, y, batch_x, batch_y,
k, cosine, n_threads)
return torch.ops.torch_cluster.knn(x, y, ptr_x, ptr_y, k, cosine,
num_workers)
@torch.jit.script
def knn_graph(x: torch.Tensor, k: int, batch: Optional[torch.Tensor] = None,
loop: bool = False, flow: str = 'source_to_target',
cosine: bool = False, n_threads: int = 1) -> torch.Tensor:
cosine: bool = False, num_workers: int = 1) -> torch.Tensor:
r"""Computes graph edges to the nearest :obj:`k` points.
Args:
......@@ -108,7 +87,8 @@ def knn_graph(x: torch.Tensor, k: int, batch: Optional[torch.Tensor] = None,
k (int): The number of neighbors.
batch (LongTensor, optional): Batch vector
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
node to a specific example. (default: :obj:`None`)
node to a specific example. :obj:`batch` needs to be sorted.
(default: :obj:`None`)
loop (bool, optional): If :obj:`True`, the graph will contain
self-loops. (default: :obj:`False`)
flow (string, optional): The flow direction when using in combination
......@@ -117,6 +97,9 @@ def knn_graph(x: torch.Tensor, k: int, batch: Optional[torch.Tensor] = None,
cosine (boolean, optional): If :obj:`True`, will use the cosine
distance instead of euclidean distance to find nearest neighbors.
(default: :obj:`False`)
num_workers (int): Number of workers to use for computation. Has no
effect in case :obj:`batch` is not :obj:`None`, or the input lies
on the GPU. (default: :obj:`1`)
:rtype: :class:`LongTensor`
......@@ -131,8 +114,8 @@ def knn_graph(x: torch.Tensor, k: int, batch: Optional[torch.Tensor] = None,
"""
assert flow in ['source_to_target', 'target_to_source']
row, col = knn(x, x, k if loop else k + 1, batch, batch,
cosine=cosine, n_threads=n_threads)
row, col = knn(x, x, k if loop else k + 1, batch, batch, cosine,
num_workers)
row, col = (col, row) if flow == 'source_to_target' else (row, col)
if not loop:
mask = row != col
......
from typing import Optional
import torch
import numpy as np
@torch.jit.script
def radius(x: torch.Tensor, y: torch.Tensor, r: float,
batch_x: Optional[torch.Tensor] = None,
batch_y: Optional[torch.Tensor] = None,
max_num_neighbors: int = 32, n_threads: int = 1) -> torch.Tensor:
batch_y: Optional[torch.Tensor] = None, max_num_neighbors: int = 32,
num_workers: int = 1) -> torch.Tensor:
r"""Finds for each element in :obj:`y` all points in :obj:`x` within
distance :obj:`r`.
......@@ -16,17 +17,19 @@ def radius(x: torch.Tensor, y: torch.Tensor, r: float,
y (Tensor): Node feature matrix
:math:`\mathbf{Y} \in \mathbb{R}^{M \times F}`.
r (float): The radius.
batch_x (LongTensor, optional): Batch vector (must be sorted)
batch_x (LongTensor, optional): Batch vector
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
node to a specific example. (default: :obj:`None`)
batch_y (LongTensor, optional): Batch vector (must be sorted)
node to a specific example. :obj:`batch_x` needs to be sorted.
(default: :obj:`None`)
batch_y (LongTensor, optional): Batch vector
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^M`, which assigns each
node to a specific example. (default: :obj:`None`)
node to a specific example. :obj:`batch_y` needs to be sorted.
(default: :obj:`None`)
max_num_neighbors (int, optional): The maximum number of neighbors to
return for each element in :obj:`y`. (default: :obj:`32`)
n_threads (int): number of threads when the input is on CPU. Note
that this has no effect when batch_x or batch_y is not None, or
x is on GPU. (default: :obj:`1`)
num_workers (int): Number of workers to use for computation. Has no
effect in case :obj:`batch_x` or :obj:`batch_y` is not
:obj:`None`, or the input lies on the GPU. (default: :obj:`1`)
.. code-block:: python
......@@ -43,71 +46,49 @@ def radius(x: torch.Tensor, y: torch.Tensor, r: float,
x = x.view(-1, 1) if x.dim() == 1 else x
y = y.view(-1, 1) if y.dim() == 1 else y
def is_sorted(x):
return (np.diff(x.detach().cpu()) >= 0).all()
if x.is_cuda:
if batch_x is not None:
assert x.size(0) == batch_x.numel()
assert is_sorted(batch_x)
batch_size = int(batch_x.max()) + 1
deg = x.new_zeros(batch_size, dtype=torch.long)
deg.scatter_add_(0, batch_x, torch.ones_like(batch_x))
ptr_x = deg.new_zeros(batch_size + 1)
torch.cumsum(deg, 0, out=ptr_x[1:])
else:
ptr_x = None
if batch_y is not None:
assert y.size(0) == batch_y.numel()
assert is_sorted(batch_y)
batch_size = int(batch_y.max()) + 1
deg = y.new_zeros(batch_size, dtype=torch.long)
deg.scatter_add_(0, batch_y, torch.ones_like(batch_y))
ptr_y = deg.new_zeros(batch_size + 1)
torch.cumsum(deg, 0, out=ptr_y[1:])
else:
ptr_y = None
result = torch.ops.torch_cluster.radius(x, y, ptr_x, ptr_y, r,
max_num_neighbors, n_threads)
if batch_x is not None:
assert x.size(0) == batch_x.numel()
batch_size = int(batch_x.max()) + 1
deg = x.new_zeros(batch_size, dtype=torch.long)
deg.scatter_add_(0, batch_x, torch.ones_like(batch_x))
ptr_x = deg.new_zeros(batch_size + 1)
torch.cumsum(deg, 0, out=ptr_x[1:])
else:
assert x.dim() == 2
if batch_x is not None:
assert batch_x.dim() == 1
assert is_sorted(batch_x)
assert x.size(0) == batch_x.size(0)
ptr_x = None
assert y.dim() == 2
if batch_y is not None:
assert batch_y.dim() == 1
assert is_sorted(batch_y)
assert y.size(0) == batch_y.size(0)
assert x.size(1) == y.size(1)
if batch_y is not None:
assert y.size(0) == batch_y.numel()
batch_size = int(batch_y.max()) + 1
result = torch.ops.torch_cluster.radius(x, y, batch_x, batch_y, r,
max_num_neighbors, n_threads)
deg = y.new_zeros(batch_size, dtype=torch.long)
deg.scatter_add_(0, batch_y, torch.ones_like(batch_y))
ptr_y = deg.new_zeros(batch_size + 1)
torch.cumsum(deg, 0, out=ptr_y[1:])
else:
ptr_y = None
return result
return torch.ops.torch_cluster.radius(x, y, ptr_x, ptr_y, r,
max_num_neighbors, num_workers)
@torch.jit.script
def radius_graph(x: torch.Tensor, r: float,
batch: Optional[torch.Tensor] = None, loop: bool = False,
max_num_neighbors: int = 32,
flow: str = 'source_to_target',
n_threads: int = 1) -> torch.Tensor:
max_num_neighbors: int = 32, flow: str = 'source_to_target',
num_workers: int = 1) -> torch.Tensor:
r"""Computes graph edges to all points within a given distance.
Args:
x (Tensor): Node feature matrix
:math:`\mathbf{X} \in \mathbb{R}^{N \times F}`.
r (float): The radius.
batch (LongTensor, optional): Batch vector (must be sorted)
batch (LongTensor, optional): Batch vector
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
node to a specific example. (default: :obj:`None`)
node to a specific example. :obj:`batch` needs to be sorted.
(default: :obj:`None`)
loop (bool, optional): If :obj:`True`, the graph will contain
self-loops. (default: :obj:`False`)
max_num_neighbors (int, optional): The maximum number of neighbors to
......@@ -115,9 +96,9 @@ def radius_graph(x: torch.Tensor, r: float,
flow (string, optional): The flow direction when using in combination
with message passing (:obj:`"source_to_target"` or
:obj:`"target_to_source"`). (default: :obj:`"source_to_target"`)
n_threads (int): number of threads when the input is on CPU. Note
that this has no effect when batch_x or batch_y is not None, or
x is on GPU. (default: :obj:`1`)
num_workers (int): Number of workers to use for computation. Has no
effect in case :obj:`batch` is not :obj:`None`, or the input lies
on the GPU. (default: :obj:`1`)
:rtype: :class:`LongTensor`
......@@ -134,7 +115,7 @@ def radius_graph(x: torch.Tensor, r: float,
assert flow in ['source_to_target', 'target_to_source']
row, col = radius(x, x, r, batch, batch,
max_num_neighbors if loop else max_num_neighbors + 1,
n_threads)
num_workers)
row, col = (col, row) if flow == 'source_to_target' else (row, col)
if not loop:
mask = row != col
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment