Unverified Commit b75a19e8 authored by Matthias Fey's avatar Matthias Fey Committed by GitHub
Browse files

Merge pull request #68 from liaopeiyuan/cpu_radius

C++ CPU for radius and knn
parents 32fa3257 29f97162
from typing import Optional
import torch
import scipy.spatial
@torch.jit.script
def knn(x: torch.Tensor, y: torch.Tensor, k: int,
batch_x: Optional[torch.Tensor] = None,
batch_y: Optional[torch.Tensor] = None,
cosine: bool = False) -> torch.Tensor:
batch_y: Optional[torch.Tensor] = None, cosine: bool = False,
num_workers: int = 1) -> torch.Tensor:
r"""Finds for each element in :obj:`y` the :obj:`k` nearest points in
:obj:`x`.
......@@ -19,13 +19,18 @@ def knn(x: torch.Tensor, y: torch.Tensor, k: int,
k (int): The number of neighbors.
batch_x (LongTensor, optional): Batch vector
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
node to a specific example. (default: :obj:`None`)
node to a specific example. :obj:`batch_x` needs to be sorted.
(default: :obj:`None`)
batch_y (LongTensor, optional): Batch vector
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^M`, which assigns each
node to a specific example. (default: :obj:`None`)
cosine (boolean, optional): If :obj:`True`, will use the cosine
distance instead of euclidean distance to find nearest neighbors.
(default: :obj:`False`)
node to a specific example. :obj:`batch_y` needs to be sorted.
(default: :obj:`None`)
cosine (boolean, optional): If :obj:`True`, will use the Cosine
distance instead of the Euclidean distance to find nearest
neighbors. (default: :obj:`False`)
num_workers (int): Number of workers to use for computation. Has no
effect in case :obj:`batch_x` or :obj:`batch_y` is not
:obj:`None`, or the input lies on the GPU. (default: :obj:`1`)
:rtype: :class:`LongTensor`
......@@ -43,77 +48,38 @@ def knn(x: torch.Tensor, y: torch.Tensor, k: int,
x = x.view(-1, 1) if x.dim() == 1 else x
y = y.view(-1, 1) if y.dim() == 1 else y
x, y = x.contiguous(), y.contiguous()
if x.is_cuda:
if batch_x is not None:
assert x.size(0) == batch_x.numel()
batch_size = int(batch_x.max()) + 1
deg = x.new_zeros(batch_size, dtype=torch.long)
deg.scatter_add_(0, batch_x, torch.ones_like(batch_x))
ptr_x = deg.new_zeros(batch_size + 1)
torch.cumsum(deg, 0, out=ptr_x[1:])
else:
ptr_x = torch.tensor([0, x.size(0)], device=x.device)
if batch_y is not None:
assert y.size(0) == batch_y.numel()
batch_size = int(batch_y.max()) + 1
deg = y.new_zeros(batch_size, dtype=torch.long)
deg.scatter_add_(0, batch_y, torch.ones_like(batch_y))
ptr_y = deg.new_zeros(batch_size + 1)
torch.cumsum(deg, 0, out=ptr_y[1:])
else:
ptr_y = torch.tensor([0, y.size(0)], device=y.device)
ptr_x: Optional[torch.Tensor] = None
if batch_x is not None:
assert x.size(0) == batch_x.numel()
batch_size = int(batch_x.max()) + 1
return torch.ops.torch_cluster.knn(x, y, ptr_x, ptr_y, k, cosine)
else:
if batch_x is None:
batch_x = x.new_zeros(x.size(0), dtype=torch.long)
if batch_y is None:
batch_y = y.new_zeros(y.size(0), dtype=torch.long)
assert x.dim() == 2 and batch_x.dim() == 1
assert y.dim() == 2 and batch_y.dim() == 1
assert x.size(1) == y.size(1)
assert x.size(0) == batch_x.size(0)
assert y.size(0) == batch_y.size(0)
if cosine:
raise NotImplementedError('`cosine` argument not supported on CPU')
deg = x.new_zeros(batch_size, dtype=torch.long)
deg.scatter_add_(0, batch_x, torch.ones_like(batch_x))
# Translate and rescale x and y to [0, 1].
min_xy = min(x.min().item(), y.min().item())
x, y = x - min_xy, y - min_xy
ptr_x = deg.new_zeros(batch_size + 1)
torch.cumsum(deg, 0, out=ptr_x[1:])
max_xy = max(x.max().item(), y.max().item())
x.div_(max_xy)
y.div_(max_xy)
ptr_y: Optional[torch.Tensor] = None
if batch_y is not None:
assert y.size(0) == batch_y.numel()
batch_size = int(batch_y.max()) + 1
# Concat batch/features to ensure no cross-links between examples.
x = torch.cat([x, 2 * x.size(1) * batch_x.view(-1, 1).to(x.dtype)], -1)
y = torch.cat([y, 2 * y.size(1) * batch_y.view(-1, 1).to(y.dtype)], -1)
deg = y.new_zeros(batch_size, dtype=torch.long)
deg.scatter_add_(0, batch_y, torch.ones_like(batch_y))
tree = scipy.spatial.cKDTree(x.detach().numpy())
dist, col = tree.query(y.detach().cpu(), k=k,
distance_upper_bound=x.size(1))
dist = torch.from_numpy(dist).to(x.dtype)
col = torch.from_numpy(col).to(torch.long)
row = torch.arange(col.size(0), dtype=torch.long)
row = row.view(-1, 1).repeat(1, k)
mask = ~torch.isinf(dist).view(-1)
row, col = row.view(-1)[mask], col.view(-1)[mask]
ptr_y = deg.new_zeros(batch_size + 1)
torch.cumsum(deg, 0, out=ptr_y[1:])
return torch.stack([row, col], dim=0)
return torch.ops.torch_cluster.knn(x, y, ptr_x, ptr_y, k, cosine,
num_workers)
@torch.jit.script
def knn_graph(x: torch.Tensor, k: int, batch: Optional[torch.Tensor] = None,
loop: bool = False, flow: str = 'source_to_target',
cosine: bool = False) -> torch.Tensor:
cosine: bool = False, num_workers: int = 1) -> torch.Tensor:
r"""Computes graph edges to the nearest :obj:`k` points.
Args:
......@@ -122,7 +88,8 @@ def knn_graph(x: torch.Tensor, k: int, batch: Optional[torch.Tensor] = None,
k (int): The number of neighbors.
batch (LongTensor, optional): Batch vector
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
node to a specific example. (default: :obj:`None`)
node to a specific example. :obj:`batch` needs to be sorted.
(default: :obj:`None`)
loop (bool, optional): If :obj:`True`, the graph will contain
self-loops. (default: :obj:`False`)
flow (string, optional): The flow direction when using in combination
......@@ -131,6 +98,9 @@ def knn_graph(x: torch.Tensor, k: int, batch: Optional[torch.Tensor] = None,
cosine (boolean, optional): If :obj:`True`, will use the cosine
distance instead of euclidean distance to find nearest neighbors.
(default: :obj:`False`)
num_workers (int): Number of workers to use for computation. Has no
effect in case :obj:`batch` is not :obj:`None`, or the input lies
on the GPU. (default: :obj:`1`)
:rtype: :class:`LongTensor`
......@@ -145,9 +115,16 @@ def knn_graph(x: torch.Tensor, k: int, batch: Optional[torch.Tensor] = None,
"""
assert flow in ['source_to_target', 'target_to_source']
row, col = knn(x, x, k if loop else k + 1, batch, batch, cosine=cosine)
row, col = (col, row) if flow == 'source_to_target' else (row, col)
edge_index = knn(x, x, k if loop else k + 1, batch, batch, cosine,
num_workers)
if flow == 'source_to_target':
row, col = edge_index[1], edge_index[0]
else:
row, col = edge_index[0], edge_index[1]
if not loop:
mask = row != col
row, col = row[mask], col[mask]
return torch.stack([row, col], dim=0)
from typing import Optional
import torch
import scipy.spatial
@torch.jit.script
def sample(col: torch.Tensor, count: int) -> torch.Tensor:
if col.size(0) > count:
col = col[torch.randperm(col.size(0), dtype=torch.long)][:count]
return col
def radius(x: torch.Tensor, y: torch.Tensor, r: float,
batch_x: Optional[torch.Tensor] = None,
batch_y: Optional[torch.Tensor] = None,
max_num_neighbors: int = 32) -> torch.Tensor:
batch_y: Optional[torch.Tensor] = None, max_num_neighbors: int = 32,
num_workers: int = 1) -> torch.Tensor:
r"""Finds for each element in :obj:`y` all points in :obj:`x` within
distance :obj:`r`.
......@@ -26,12 +19,17 @@ def radius(x: torch.Tensor, y: torch.Tensor, r: float,
r (float): The radius.
batch_x (LongTensor, optional): Batch vector
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
node to a specific example. (default: :obj:`None`)
node to a specific example. :obj:`batch_x` needs to be sorted.
(default: :obj:`None`)
batch_y (LongTensor, optional): Batch vector
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^M`, which assigns each
node to a specific example. (default: :obj:`None`)
node to a specific example. :obj:`batch_y` needs to be sorted.
(default: :obj:`None`)
max_num_neighbors (int, optional): The maximum number of neighbors to
return for each element in :obj:`y`. (default: :obj:`32`)
num_workers (int): Number of workers to use for computation. Has no
effect in case :obj:`batch_x` or :obj:`batch_y` is not
:obj:`None`, or the input lies on the GPU. (default: :obj:`1`)
.. code-block:: python
......@@ -47,63 +45,39 @@ def radius(x: torch.Tensor, y: torch.Tensor, r: float,
x = x.view(-1, 1) if x.dim() == 1 else x
y = y.view(-1, 1) if y.dim() == 1 else y
x, y = x.contiguous(), y.contiguous()
if x.is_cuda:
if batch_x is not None:
assert x.size(0) == batch_x.numel()
batch_size = int(batch_x.max()) + 1
deg = x.new_zeros(batch_size, dtype=torch.long)
deg.scatter_add_(0, batch_x, torch.ones_like(batch_x))
ptr_x = deg.new_zeros(batch_size + 1)
torch.cumsum(deg, 0, out=ptr_x[1:])
else:
ptr_x = torch.tensor([0, x.size(0)], device=x.device)
if batch_y is not None:
assert y.size(0) == batch_y.numel()
batch_size = int(batch_y.max()) + 1
ptr_x: Optional[torch.Tensor] = None
if batch_x is not None:
assert x.size(0) == batch_x.numel()
batch_size = int(batch_x.max()) + 1
deg = y.new_zeros(batch_size, dtype=torch.long)
deg.scatter_add_(0, batch_y, torch.ones_like(batch_y))
ptr_y = deg.new_zeros(batch_size + 1)
torch.cumsum(deg, 0, out=ptr_y[1:])
else:
ptr_y = torch.tensor([0, y.size(0)], device=y.device)
deg = x.new_zeros(batch_size, dtype=torch.long)
deg.scatter_add_(0, batch_x, torch.ones_like(batch_x))
return torch.ops.torch_cluster.radius(x, y, ptr_x, ptr_y, r,
max_num_neighbors)
else:
if batch_x is None:
batch_x = x.new_zeros(x.size(0), dtype=torch.long)
ptr_x = deg.new_zeros(batch_size + 1)
torch.cumsum(deg, 0, out=ptr_x[1:])
if batch_y is None:
batch_y = y.new_zeros(y.size(0), dtype=torch.long)
ptr_y: Optional[torch.Tensor] = None
if batch_y is not None:
assert y.size(0) == batch_y.numel()
batch_size = int(batch_y.max()) + 1
assert x.dim() == 2 and batch_x.dim() == 1
assert y.dim() == 2 and batch_y.dim() == 1
assert x.size(1) == y.size(1)
assert x.size(0) == batch_x.size(0)
assert y.size(0) == batch_y.size(0)
deg = y.new_zeros(batch_size, dtype=torch.long)
deg.scatter_add_(0, batch_y, torch.ones_like(batch_y))
x = torch.cat([x, 2 * r * batch_x.view(-1, 1).to(x.dtype)], dim=-1)
y = torch.cat([y, 2 * r * batch_y.view(-1, 1).to(y.dtype)], dim=-1)
ptr_y = deg.new_zeros(batch_size + 1)
torch.cumsum(deg, 0, out=ptr_y[1:])
tree = scipy.spatial.cKDTree(x.detach().numpy())
col = tree.query_ball_point(y.detach().numpy(), r)
col = [torch.tensor(c, dtype=torch.long) for c in col]
col = [sample(c, max_num_neighbors) for c in col]
row = [torch.full_like(c, i) for i, c in enumerate(col)]
row, col = torch.cat(row, dim=0), torch.cat(col, dim=0)
mask = col < int(tree.n)
return torch.stack([row[mask], col[mask]], dim=0)
return torch.ops.torch_cluster.radius(x, y, ptr_x, ptr_y, r,
max_num_neighbors, num_workers)
@torch.jit.script
def radius_graph(x: torch.Tensor, r: float,
batch: Optional[torch.Tensor] = None, loop: bool = False,
max_num_neighbors: int = 32,
flow: str = 'source_to_target') -> torch.Tensor:
max_num_neighbors: int = 32, flow: str = 'source_to_target',
num_workers: int = 1) -> torch.Tensor:
r"""Computes graph edges to all points within a given distance.
Args:
......@@ -112,7 +86,8 @@ def radius_graph(x: torch.Tensor, r: float,
r (float): The radius.
batch (LongTensor, optional): Batch vector
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
node to a specific example. (default: :obj:`None`)
node to a specific example. :obj:`batch` needs to be sorted.
(default: :obj:`None`)
loop (bool, optional): If :obj:`True`, the graph will contain
self-loops. (default: :obj:`False`)
max_num_neighbors (int, optional): The maximum number of neighbors to
......@@ -120,6 +95,9 @@ def radius_graph(x: torch.Tensor, r: float,
flow (string, optional): The flow direction when using in combination
with message passing (:obj:`"source_to_target"` or
:obj:`"target_to_source"`). (default: :obj:`"source_to_target"`)
num_workers (int): Number of workers to use for computation. Has no
effect in case :obj:`batch` is not :obj:`None`, or the input lies
on the GPU. (default: :obj:`1`)
:rtype: :class:`LongTensor`
......@@ -134,10 +112,16 @@ def radius_graph(x: torch.Tensor, r: float,
"""
assert flow in ['source_to_target', 'target_to_source']
row, col = radius(x, x, r, batch, batch,
max_num_neighbors if loop else max_num_neighbors + 1)
row, col = (col, row) if flow == 'source_to_target' else (row, col)
edge_index = radius(x, x, r, batch, batch,
max_num_neighbors if loop else max_num_neighbors + 1,
num_workers)
if flow == 'source_to_target':
row, col = edge_index[1], edge_index[0]
else:
row, col = edge_index[0], edge_index[1]
if not loop:
mask = row != col
row, col = row[mask], col[mask]
return torch.stack([row, col], dim=0)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment