Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
torch-cluster
Commits
7aee6467
You need to sign in or sign up before continuing.
Unverified
Commit
7aee6467
authored
Apr 04, 2019
by
Matthias Fey
Committed by
GitHub
Apr 04, 2019
Browse files
Merge pull request #18 from kuynzereb/master
typos
parents
33fa08d2
f0f2062f
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
4 additions
and
4 deletions
+4
-4
torch_cluster/nearest.py
torch_cluster/nearest.py
+2
-2
torch_cluster/radius.py
torch_cluster/radius.py
+2
-2
No files found.
torch_cluster/nearest.py
View file @
7aee6467
...
@@ -13,7 +13,7 @@ def nearest(x, y, batch_x=None, batch_y=None):
...
@@ -13,7 +13,7 @@ def nearest(x, y, batch_x=None, batch_y=None):
x (Tensor): Node feature matrix
x (Tensor): Node feature matrix
:math:`\mathbf{X} \in \mathbb{R}^{N \times F}`.
:math:`\mathbf{X} \in \mathbb{R}^{N \times F}`.
y (Tensor): Node feature matrix
y (Tensor): Node feature matrix
:math:`\mathbf{
X
} \in \mathbb{R}^{M \times F}`.
:math:`\mathbf{
Y
} \in \mathbb{R}^{M \times F}`.
batch_x (LongTensor, optional): Batch vector
batch_x (LongTensor, optional): Batch vector
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
node to a specific example. (default: :obj:`None`)
node to a specific example. (default: :obj:`None`)
...
@@ -31,7 +31,7 @@ def nearest(x, y, batch_x=None, batch_y=None):
...
@@ -31,7 +31,7 @@ def nearest(x, y, batch_x=None, batch_y=None):
>>> x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
>>> x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
>>> batch_x = torch.tensor([0, 0, 0, 0])
>>> batch_x = torch.tensor([0, 0, 0, 0])
>>> y = torch.Tensor([[-1, 0], [1, 0]])
>>> y = torch.Tensor([[-1, 0], [1, 0]])
>>> batch_
x
= torch.tensor([0, 0])
>>> batch_
y
= torch.tensor([0, 0])
>>> cluster = nearest(x, y, batch_x, batch_y)
>>> cluster = nearest(x, y, batch_x, batch_y)
"""
"""
...
...
torch_cluster/radius.py
View file @
7aee6467
...
@@ -13,7 +13,7 @@ def radius(x, y, r, batch_x=None, batch_y=None, max_num_neighbors=32):
...
@@ -13,7 +13,7 @@ def radius(x, y, r, batch_x=None, batch_y=None, max_num_neighbors=32):
x (Tensor): Node feature matrix
x (Tensor): Node feature matrix
:math:`\mathbf{X} \in \mathbb{R}^{N \times F}`.
:math:`\mathbf{X} \in \mathbb{R}^{N \times F}`.
y (Tensor): Node feature matrix
y (Tensor): Node feature matrix
:math:`\mathbf{
X
} \in \mathbb{R}^{M \times F}`.
:math:`\mathbf{
Y
} \in \mathbb{R}^{M \times F}`.
r (float): The radius.
r (float): The radius.
batch_x (LongTensor, optional): Batch vector
batch_x (LongTensor, optional): Batch vector
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
:math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
...
@@ -38,7 +38,7 @@ def radius(x, y, r, batch_x=None, batch_y=None, max_num_neighbors=32):
...
@@ -38,7 +38,7 @@ def radius(x, y, r, batch_x=None, batch_y=None, max_num_neighbors=32):
>>> x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
>>> x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
>>> batch_x = torch.tensor([0, 0, 0, 0])
>>> batch_x = torch.tensor([0, 0, 0, 0])
>>> y = torch.Tensor([[-1, 0], [1, 0]])
>>> y = torch.Tensor([[-1, 0], [1, 0]])
>>> batch_
x
= torch.tensor([0, 0])
>>> batch_
y
= torch.tensor([0, 0])
>>> assign_index = radius(x, y, 1.5, batch_x, batch_y)
>>> assign_index = radius(x, y, 1.5, batch_x, batch_y)
"""
"""
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment