Commit 5f98eee4 authored by rusty1s's avatar rusty1s
Browse files

cuda grid

parent 6b18f2d1
#include <torch/torch.h>
at::Tensor grid_cuda(at::Tensor pos, at::Tensor size, at::Tensor start,
at::Tensor end);
#define CHECK_CUDA(x) AT_ASSERT(x.type().is_cuda(), #x " must be a CUDA tensor")
at::Tensor grid(at::Tensor pos, at::Tensor size, at::Tensor start,
at::Tensor end) {
CHECK_CUDA(pos);
CHECK_CUDA(size);
CHECK_CUDA(start);
CHECK_CUDA(end);
return grid_cuda(pos, size, start, end);
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("grid", &grid, "Grid (CUDA)");
}
#include <ATen/ATen.h>
#include <ATen/cuda/detail/IndexUtils.cuh>
template <typename scalar_t>
__global__ void grid_cuda_kernel(
int64_t *cluster, const at::cuda::detail::TensorInfo<scalar_t, int> pos,
const scalar_t *__restrict__ size, const scalar_t *__restrict__ start,
const scalar_t *__restrict__ end, const size_t n) {
const size_t index = blockIdx.x * blockDim.x + threadIdx.x;
const size_t stride = blockDim.x * gridDim.x;
for (ptrdiff_t i = index; i < n; i += stride) {
int64_t c = 0, k = 1;
scalar_t tmp;
for (ptrdiff_t d = 0; d < pos.sizes[1]; d++) {
tmp = (pos.data[i * pos.strides[0] + d * pos.strides[1]]) - start[d];
c += (int64_t)(tmp / size[d]) * k;
k += (int64_t)((end[d] - start[d]) / size[d]);
}
cluster[i] = c;
}
}
at::Tensor grid_cuda(at::Tensor pos, at::Tensor size, at::Tensor start,
at::Tensor end) {
size = size.toType(pos.type());
start = start.toType(pos.type());
end = end.toType(pos.type());
const auto num_nodes = pos.size(0);
auto cluster = at::empty(pos.type().toScalarType(at::kLong), {num_nodes});
const int threads = 1024;
const dim3 blocks((num_nodes + threads - 1) / threads);
AT_DISPATCH_ALL_TYPES(pos.type(), "unique", [&] {
auto cluster_data = cluster.data<int64_t>();
auto pos_info = at::cuda::detail::getTensorInfo<scalar_t, int>(pos);
auto size_data = size.data<scalar_t>();
auto start_data = start.data<scalar_t>();
auto end_data = end.data<scalar_t>();
grid_cuda_kernel<scalar_t><<<blocks, threads>>>(
cluster_data, pos_info, size_data, start_data, end_data, num_nodes);
});
return cluster;
}
from setuptools import setup
from torch.utils.cpp_extension import BuildExtension, CUDAExtension
setup(
name='cluster_cuda',
ext_modules=[
CUDAExtension('cluster_cuda', ['cluster.cpp', 'cluster_kernel.cu'])
],
cmdclass={'build_ext': BuildExtension},
)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment