Commit 4d4e064b authored by yangzhong's avatar yangzhong
Browse files

push 1.6.0 version

parent 6907f8b7
#include "hip/hip_runtime.h"
#include "rw_hip.h"
#include "rw_cuda.h"
#include <ATen/hip/HIPContext.h>
#include <hiprand.h>
#include <hiprand_kernel.h>
#include <ATen/cuda/CUDAContext.h>
#include <curand.h>
#include <curand_kernel.h>
#include "utils.cuh"
......@@ -46,8 +45,8 @@ rejection_sampling_kernel(unsigned int seed, const int64_t *rowptr,
const int64_t walk_length, const int64_t numel,
const double p, const double q) {
hiprandState_t state;
hiprand_init(seed, 0, 0, &state);
curandState_t state;
curand_init(seed, 0, 0, &state);
double max_prob = fmax(fmax(1. / p, 1.), 1. / q);
double prob_0 = 1. / p / max_prob;
......@@ -66,7 +65,7 @@ rejection_sampling_kernel(unsigned int seed, const int64_t *rowptr,
e_cur = -1;
v = t;
} else {
e_cur = row_start + (hiprand(&state) % (row_end - row_start));
e_cur = row_start + (curand(&state) % (row_end - row_start));
v = col[e_cur];
}
......@@ -84,10 +83,10 @@ rejection_sampling_kernel(unsigned int seed, const int64_t *rowptr,
x = col[e_cur];
} else {
while (true) {
e_cur = row_start + (hiprand(&state) % (row_end - row_start));
e_cur = row_start + (curand(&state) % (row_end - row_start));
x = col[e_cur];
double r = hiprand_uniform(&state); // (0, 1]
double r = curand_uniform(&state); // (0, 1]
if (x == t && r < prob_0)
break;
......@@ -122,7 +121,7 @@ random_walk_cuda(torch::Tensor rowptr, torch::Tensor col, torch::Tensor start,
CHECK_CUDA(rowptr);
CHECK_CUDA(col);
CHECK_CUDA(start);
hipSetDevice(rowptr.get_device());
cudaSetDevice(rowptr.get_device());
CHECK_INPUT(rowptr.dim() == 1);
CHECK_INPUT(col.dim() == 1);
......
......@@ -3,12 +3,12 @@
#include "cpu/fps_cpu.h"
#ifdef WITH_HIP
#include "hip/fps_hip.h"
#ifdef WITH_CUDA
#include "cuda/fps_cuda.h"
#endif
#ifdef _WIN32
#ifdef WITH_HIP
#ifdef WITH_CUDA
PyMODINIT_FUNC PyInit__fps_cuda(void) { return NULL; }
#else
PyMODINIT_FUNC PyInit__fps_cpu(void) { return NULL; }
......@@ -18,7 +18,7 @@ PyMODINIT_FUNC PyInit__fps_cpu(void) { return NULL; }
torch::Tensor fps(torch::Tensor src, torch::Tensor ptr, torch::Tensor ratio,
bool random_start) {
if (src.device().is_cuda()) {
#ifdef WITH_HIP
#ifdef WITH_CUDA
return fps_cuda(src, ptr, ratio, random_start);
#else
AT_ERROR("Not compiled with CUDA support");
......
......@@ -3,12 +3,12 @@
#include "cpu/graclus_cpu.h"
#ifdef WITH_HIP
#include "hip/graclus_hip.h"
#ifdef WITH_CUDA
#include "cuda/graclus_cuda.h"
#endif
#ifdef _WIN32
#ifdef WITH_HIP
#ifdef WITH_CUDA
PyMODINIT_FUNC PyInit__graclus_cuda(void) { return NULL; }
#else
PyMODINIT_FUNC PyInit__graclus_cpu(void) { return NULL; }
......@@ -18,7 +18,7 @@ PyMODINIT_FUNC PyInit__graclus_cpu(void) { return NULL; }
torch::Tensor graclus(torch::Tensor rowptr, torch::Tensor col,
torch::optional<torch::Tensor> optional_weight) {
if (rowptr.device().is_cuda()) {
#ifdef WITH_HIP
#ifdef WITH_CUDA
return graclus_cuda(rowptr, col, optional_weight);
#else
AT_ERROR("Not compiled with CUDA support");
......
......@@ -3,12 +3,12 @@
#include "cpu/grid_cpu.h"
#ifdef WITH_HIP
#include "hip/grid_hip.h"
#ifdef WITH_CUDA
#include "cuda/grid_cuda.h"
#endif
#ifdef _WIN32
#ifdef WITH_HIP
#ifdef WITH_CUDA
PyMODINIT_FUNC PyInit__grid_cuda(void) { return NULL; }
#else
PyMODINIT_FUNC PyInit__grid_cpu(void) { return NULL; }
......@@ -19,7 +19,7 @@ torch::Tensor grid(torch::Tensor pos, torch::Tensor size,
torch::optional<torch::Tensor> optional_start,
torch::optional<torch::Tensor> optional_end) {
if (pos.device().is_cuda()) {
#ifdef WITH_HIP
#ifdef WITH_CUDA
return grid_cuda(pos, size, optional_start, optional_end);
#else
AT_ERROR("Not compiled with CUDA support");
......
#include "hip/hip_runtime.h"
#include "fps_hip.h"
#include <ATen/hip/HIPContext.h>
#include "utils.cuh"
#define THREADS 256
template <typename scalar_t>
__global__ void fps_kernel(const scalar_t *src, const int64_t *ptr,
const int64_t *out_ptr, const int64_t *start,
scalar_t *dist, int64_t *out, int64_t dim) {
const int64_t thread_idx = threadIdx.x;
const int64_t batch_idx = blockIdx.x;
const int64_t start_idx = ptr[batch_idx];
const int64_t end_idx = ptr[batch_idx + 1];
__shared__ scalar_t best_dist[THREADS];
__shared__ int64_t best_dist_idx[THREADS];
if (thread_idx == 0) {
out[out_ptr[batch_idx]] = start_idx + start[batch_idx];
}
for (int64_t m = out_ptr[batch_idx] + 1; m < out_ptr[batch_idx + 1]; m++) {
__syncthreads();
int64_t old = out[m - 1];
scalar_t best = (scalar_t)-1.;
int64_t best_idx = 0;
for (int64_t n = start_idx + thread_idx; n < end_idx; n += THREADS) {
scalar_t tmp, dd = (scalar_t)0.;
for (int64_t d = 0; d < dim; d++) {
tmp = src[dim * old + d] - src[dim * n + d];
dd += tmp * tmp;
}
dd = min(dist[n], dd);
dist[n] = dd;
if (dd > best) {
best = dd;
best_idx = n;
}
}
best_dist[thread_idx] = best;
best_dist_idx[thread_idx] = best_idx;
for (int64_t i = 1; i < THREADS; i *= 2) {
__syncthreads();
if ((thread_idx + i) < THREADS &&
best_dist[thread_idx] < best_dist[thread_idx + i]) {
best_dist[thread_idx] = best_dist[thread_idx + i];
best_dist_idx[thread_idx] = best_dist_idx[thread_idx + i];
}
}
__syncthreads();
if (thread_idx == 0) {
out[m] = best_dist_idx[0];
}
}
}
torch::Tensor fps_cuda(torch::Tensor src, torch::Tensor ptr,
torch::Tensor ratio, bool random_start) {
CHECK_CUDA(src);
CHECK_CUDA(ptr);
CHECK_CUDA(ratio);
CHECK_INPUT(ptr.dim() == 1);
hipSetDevice(src.get_device());
src = src.view({src.size(0), -1}).contiguous();
ptr = ptr.contiguous();
auto batch_size = ptr.numel() - 1;
auto deg = ptr.narrow(0, 1, batch_size) - ptr.narrow(0, 0, batch_size);
auto out_ptr = deg.toType(ratio.scalar_type()) * ratio;
out_ptr = out_ptr.ceil().toType(torch::kLong).cumsum(0);
out_ptr = torch::cat({torch::zeros(1, ptr.options()), out_ptr}, 0);
torch::Tensor start;
if (random_start) {
start = torch::rand(batch_size, src.options());
start = (start * deg.toType(ratio.scalar_type())).toType(torch::kLong);
} else {
start = torch::zeros(batch_size, ptr.options());
}
auto dist = torch::full(src.size(0), 5e4, src.options());
auto out_size = (int64_t *)malloc(sizeof(int64_t));
hipMemcpy(out_size, out_ptr[-1].data_ptr<int64_t>(), sizeof(int64_t),
hipMemcpyDeviceToHost);
auto out = torch::empty(out_size[0], out_ptr.options());
auto stream = at::hip::getCurrentHIPStreamMasqueradingAsCUDA();
auto scalar_type = src.scalar_type();
AT_DISPATCH_FLOATING_TYPES_AND(at::ScalarType::Half, scalar_type, "_", [&] {
hipLaunchKernelGGL(( fps_kernel<scalar_t>), dim3(batch_size), dim3(THREADS), 0, stream,
src.data_ptr<scalar_t>(), ptr.data_ptr<int64_t>(),
out_ptr.data_ptr<int64_t>(), start.data_ptr<int64_t>(),
dist.data_ptr<scalar_t>(), out.data_ptr<int64_t>(), src.size(1));
});
return out;
}
#include "hip/hip_runtime.h"
#include "graclus_hip.h"
#include <ATen/hip/HIPContext.h>
#include "utils.cuh"
#define THREADS 1024
#define BLOCKS(N) (N + THREADS - 1) / THREADS
#define BLUE_P 0.53406
__device__ bool done_d;
__global__ void init_done_kernel() { done_d = true; }
__global__ void colorize_kernel(int64_t *out, const float *bernoulli,
int64_t numel) {
const int64_t thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (thread_idx < numel) {
if (out[thread_idx] < 0) {
out[thread_idx] = (int64_t)bernoulli[thread_idx] - 2;
done_d = false;
}
}
}
bool colorize(torch::Tensor out) {
auto stream = at::hip::getCurrentHIPStreamMasqueradingAsCUDA();
hipLaunchKernelGGL(( init_done_kernel), dim3(1), dim3(1), 0, stream, );
auto numel = out.size(0);
auto props = torch::full(numel, BLUE_P, out.options().dtype(torch::kFloat));
auto bernoulli = props.bernoulli();
hipLaunchKernelGGL(( colorize_kernel), dim3(BLOCKS(numel)), dim3(THREADS), 0, stream,
out.data_ptr<int64_t>(), bernoulli.data_ptr<float>(), numel);
bool done_h;
hipMemcpyFromSymbol(&done_h, HIP_SYMBOL(done_d), sizeof(done_h), 0,
hipMemcpyDeviceToHost);
return done_h;
}
__global__ void propose_kernel(int64_t *out, int64_t *proposal,
const int64_t *rowptr, const int64_t *col,
int64_t numel) {
const int64_t thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (thread_idx < numel) {
if (out[thread_idx] != -1)
return; // Only vist blue nodes.
bool has_unmatched_neighbor = false;
for (int64_t i = rowptr[thread_idx]; i < rowptr[thread_idx + 1]; i++) {
auto v = col[i];
if (out[v] < 0)
has_unmatched_neighbor = true; // Unmatched neighbor found.
if (out[v] == -2) {
proposal[thread_idx] = v; // Propose to first red neighbor.
break;
}
}
if (!has_unmatched_neighbor)
out[thread_idx] = thread_idx;
}
}
template <typename scalar_t>
__global__ void weighted_propose_kernel(int64_t *out, int64_t *proposal,
const int64_t *rowptr,
const int64_t *col,
const scalar_t *weight, int64_t numel) {
const int64_t thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (thread_idx < numel) {
if (out[thread_idx] != -1)
return; // Only vist blue nodes.
bool has_unmatched_neighbor = false;
int64_t v_max = -1;
scalar_t w_max = 0;
for (int64_t i = rowptr[thread_idx]; i < rowptr[thread_idx + 1]; i++) {
auto v = col[i];
if (out[v] < 0)
has_unmatched_neighbor = true; // Unmatched neighbor found.
// Find maximum weighted red neighbor.
if (out[v] == -2 && weight[i] >= w_max) {
v_max = v;
w_max = weight[i];
}
}
proposal[thread_idx] = v_max; // Propose.
if (!has_unmatched_neighbor)
out[thread_idx] = thread_idx;
}
}
void propose(torch::Tensor out, torch::Tensor proposal, torch::Tensor rowptr,
torch::Tensor col,
torch::optional<torch::Tensor> optional_weight) {
auto stream = at::hip::getCurrentHIPStreamMasqueradingAsCUDA();
if (!optional_weight.has_value()) {
hipLaunchKernelGGL(( propose_kernel), dim3(BLOCKS(out.numel())), dim3(THREADS), 0, stream,
out.data_ptr<int64_t>(), proposal.data_ptr<int64_t>(),
rowptr.data_ptr<int64_t>(), col.data_ptr<int64_t>(), out.numel());
} else {
auto weight = optional_weight.value();
auto scalar_type = weight.scalar_type();
AT_DISPATCH_ALL_TYPES_AND(at::ScalarType::Half, scalar_type, "_", [&] {
hipLaunchKernelGGL(( weighted_propose_kernel<scalar_t>)
, dim3(BLOCKS(out.numel())), dim3(THREADS), 0, stream,
out.data_ptr<int64_t>(), proposal.data_ptr<int64_t>(),
rowptr.data_ptr<int64_t>(), col.data_ptr<int64_t>(),
weight.data_ptr<scalar_t>(), out.numel());
});
}
}
__global__ void respond_kernel(int64_t *out, const int64_t *proposal,
const int64_t *rowptr, const int64_t *col,
int64_t numel) {
const int64_t thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (thread_idx < numel) {
if (out[thread_idx] != -2)
return; // Only vist red nodes.
bool has_unmatched_neighbor = false;
for (int64_t i = rowptr[thread_idx]; i < rowptr[thread_idx + 1]; i++) {
auto v = col[i];
if (out[v] < 0)
has_unmatched_neighbor = true; // Unmatched neighbor found.
if (out[v] == -1 && proposal[v] == thread_idx) {
// Match first blue neighbhor v which proposed to u.
out[thread_idx] = min(thread_idx, v);
out[v] = min(thread_idx, v);
break;
}
}
if (!has_unmatched_neighbor)
out[thread_idx] = thread_idx;
}
}
template <typename scalar_t>
__global__ void weighted_respond_kernel(int64_t *out, const int64_t *proposal,
const int64_t *rowptr,
const int64_t *col,
const scalar_t *weight, int64_t numel) {
const int64_t thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (thread_idx < numel) {
if (out[thread_idx] != -2)
return; // Only vist red nodes.
bool has_unmatched_neighbor = false;
int64_t v_max = -1;
scalar_t w_max = 0;
for (int64_t i = rowptr[thread_idx]; i < rowptr[thread_idx + 1]; i++) {
auto v = col[i];
if (out[v] < 0)
has_unmatched_neighbor = true; // Unmatched neighbor found.
if (out[v] == -1 && proposal[v] == thread_idx && weight[i] >= w_max) {
// Find maximum weighted blue neighbhor v which proposed to u.
v_max = v;
w_max = weight[i];
}
}
if (v_max >= 0) {
out[thread_idx] = min(thread_idx, v_max); // Match neighbors.
out[v_max] = min(thread_idx, v_max);
}
if (!has_unmatched_neighbor)
out[thread_idx] = thread_idx;
}
}
void respond(torch::Tensor out, torch::Tensor proposal, torch::Tensor rowptr,
torch::Tensor col,
torch::optional<torch::Tensor> optional_weight) {
auto stream = at::hip::getCurrentHIPStreamMasqueradingAsCUDA();
if (!optional_weight.has_value()) {
hipLaunchKernelGGL(( respond_kernel), dim3(BLOCKS(out.numel())), dim3(THREADS), 0, stream,
out.data_ptr<int64_t>(), proposal.data_ptr<int64_t>(),
rowptr.data_ptr<int64_t>(), col.data_ptr<int64_t>(), out.numel());
} else {
auto weight = optional_weight.value();
auto scalar_type = weight.scalar_type();
AT_DISPATCH_ALL_TYPES_AND(at::ScalarType::Half, scalar_type, "_", [&] {
hipLaunchKernelGGL(( weighted_respond_kernel<scalar_t>)
, dim3(BLOCKS(out.numel())), dim3(THREADS), 0, stream,
out.data_ptr<int64_t>(), proposal.data_ptr<int64_t>(),
rowptr.data_ptr<int64_t>(), col.data_ptr<int64_t>(),
weight.data_ptr<scalar_t>(), out.numel());
});
}
}
torch::Tensor graclus_cuda(torch::Tensor rowptr, torch::Tensor col,
torch::optional<torch::Tensor> optional_weight) {
CHECK_CUDA(rowptr);
CHECK_CUDA(col);
CHECK_INPUT(rowptr.dim() == 1 && col.dim() == 1);
if (optional_weight.has_value()) {
CHECK_CUDA(optional_weight.value());
CHECK_INPUT(optional_weight.value().dim() == 1);
CHECK_INPUT(optional_weight.value().numel() == col.numel());
}
hipSetDevice(rowptr.get_device());
int64_t num_nodes = rowptr.numel() - 1;
auto out = torch::full(num_nodes, -1, rowptr.options());
auto proposal = torch::full(num_nodes, -1, rowptr.options());
while (!colorize(out)) {
propose(out, proposal, rowptr, col, optional_weight);
respond(out, proposal, rowptr, col, optional_weight);
}
return out;
}
#include "hip/hip_runtime.h"
#include "grid_hip.h"
#include <ATen/hip/HIPContext.h>
#include "utils.cuh"
#define THREADS 1024
#define BLOCKS(N) (N + THREADS - 1) / THREADS
template <typename scalar_t>
__global__ void grid_kernel(const scalar_t *pos, const scalar_t *size,
const scalar_t *start, const scalar_t *end,
int64_t *out, int64_t D, int64_t numel) {
const int64_t thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (thread_idx < numel) {
int64_t c = 0, k = 1;
for (int64_t d = 0; d < D; d++) {
scalar_t p = pos[thread_idx * D + d] - start[d];
c += (int64_t)(p / size[d]) * k;
k *= (int64_t)((end[d] - start[d]) / size[d]) + 1;
}
out[thread_idx] = c;
}
}
torch::Tensor grid_cuda(torch::Tensor pos, torch::Tensor size,
torch::optional<torch::Tensor> optional_start,
torch::optional<torch::Tensor> optional_end) {
CHECK_CUDA(pos);
CHECK_CUDA(size);
hipSetDevice(pos.get_device());
if (optional_start.has_value())
CHECK_CUDA(optional_start.value());
if (optional_start.has_value())
CHECK_CUDA(optional_start.value());
pos = pos.view({pos.size(0), -1}).contiguous();
size = size.contiguous();
CHECK_INPUT(size.numel() == pos.size(1));
if (!optional_start.has_value())
optional_start = std::get<0>(pos.min(0));
else {
optional_start = optional_start.value().contiguous();
CHECK_INPUT(optional_start.value().numel() == pos.size(1));
}
if (!optional_end.has_value())
optional_end = std::get<0>(pos.max(0));
else {
optional_start = optional_start.value().contiguous();
CHECK_INPUT(optional_start.value().numel() == pos.size(1));
}
auto start = optional_start.value();
auto end = optional_end.value();
auto out = torch::empty(pos.size(0), pos.options().dtype(torch::kLong));
auto stream = at::hip::getCurrentHIPStreamMasqueradingAsCUDA();
AT_DISPATCH_ALL_TYPES_AND(at::ScalarType::Half, pos.scalar_type(), "_", [&] {
hipLaunchKernelGGL(( grid_kernel<scalar_t>), dim3(BLOCKS(out.numel())), dim3(THREADS), 0, stream,
pos.data_ptr<scalar_t>(), size.data_ptr<scalar_t>(),
start.data_ptr<scalar_t>(), end.data_ptr<scalar_t>(),
out.data_ptr<int64_t>(), pos.size(1), out.numel());
});
return out;
}
#include "hip/hip_runtime.h"
#include "radius_hip.h"
#include <ATen/hip/HIPContext.h>
#include "utils.cuh"
#define THREADS 256
template <typename scalar_t> struct Cosine {
static inline __device__ scalar_t dot(const scalar_t *a, const scalar_t *b,
int64_t n_a, int64_t n_b,
int64_t size) {
scalar_t result = 0;
for (int64_t i = 0; i < size; i++) {
result += a[n_a * size + i] * b[n_b * size + i];
}
return result;
}
static inline __device__ scalar_t norm(const scalar_t *a, int64_t n_a,
int64_t size) {
scalar_t result = 0;
for (int64_t i = 0; i < size; i++) {
result += a[n_a * size + i] * a[n_a * size + i];
}
return sqrt(result);
}
};
template <typename scalar_t>
__global__ void
knn_kernel(const scalar_t *__restrict__ x, const scalar_t *__restrict__ y,
const int64_t *__restrict__ ptr_x, const int64_t *__restrict__ ptr_y,
int64_t *__restrict__ row, int64_t *__restrict__ col,
const int64_t k, const int64_t n, const int64_t m, const int64_t dim,
const int64_t num_examples, const bool cosine) {
const int64_t n_y = blockIdx.x * blockDim.x + threadIdx.x;
if (n_y >= m)
return;
const int64_t example_idx = get_example_idx(n_y, ptr_y, num_examples);
scalar_t best_dist[100];
int64_t best_idx[100];
for (int e = 0; e < k; e++) {
best_dist[e] = 5e4;
best_idx[e] = -1;
}
for (int64_t n_x = ptr_x[example_idx]; n_x < ptr_x[example_idx + 1]; n_x++) {
scalar_t tmp_dist = 0;
if (cosine) {
tmp_dist = Cosine<scalar_t>::dot(x, y, n_x, n_y, dim) /
(Cosine<scalar_t>::norm(x, n_x, dim) *
Cosine<scalar_t>::norm(y, n_y, dim));
tmp_dist = 1. - tmp_dist;
} else {
for (int64_t d = 0; d < dim; d++) {
tmp_dist += (x[n_x * dim + d] - y[n_y * dim + d]) *
(x[n_x * dim + d] - y[n_y * dim + d]);
}
}
for (int64_t e1 = 0; e1 < k; e1++) {
if (best_dist[e1] > tmp_dist) {
for (int64_t e2 = k - 1; e2 > e1; e2--) {
best_dist[e2] = best_dist[e2 - 1];
best_idx[e2] = best_idx[e2 - 1];
}
best_dist[e1] = tmp_dist;
best_idx[e1] = n_x;
break;
}
}
}
for (int64_t e = 0; e < k; e++) {
row[n_y * k + e] = n_y;
col[n_y * k + e] = best_idx[e];
}
}
torch::Tensor knn_cuda(const torch::Tensor x, const torch::Tensor y,
torch::optional<torch::Tensor> ptr_x,
torch::optional<torch::Tensor> ptr_y, const int64_t k,
const bool cosine) {
CHECK_CUDA(x);
CHECK_CONTIGUOUS(x);
CHECK_INPUT(x.dim() == 2);
CHECK_CUDA(y);
CHECK_CONTIGUOUS(y);
CHECK_INPUT(y.dim() == 2);
CHECK_INPUT(x.size(1) == y.size(1));
AT_ASSERTM(k <= 100, "`k` needs to smaller than or equal to 100");
if (ptr_x.has_value()) {
CHECK_CUDA(ptr_x.value());
CHECK_INPUT(ptr_x.value().dim() == 1);
} else
ptr_x = torch::arange(0, x.size(0) + 1, x.size(0),
x.options().dtype(torch::kLong));
if (ptr_y.has_value()) {
CHECK_CUDA(ptr_y.value());
CHECK_INPUT(ptr_y.value().dim() == 1);
} else
ptr_y = torch::arange(0, y.size(0) + 1, y.size(0),
y.options().dtype(torch::kLong));
CHECK_INPUT(ptr_x.value().numel() == ptr_y.value().numel());
hipSetDevice(x.get_device());
auto row = torch::empty(y.size(0) * k, ptr_y.value().options());
auto col = torch::full(y.size(0) * k, -1, ptr_y.value().options());
dim3 BLOCKS((y.size(0) + THREADS - 1) / THREADS);
auto stream = at::hip::getCurrentHIPStreamMasqueradingAsCUDA();
auto scalar_type = x.scalar_type();
AT_DISPATCH_FLOATING_TYPES_AND(at::ScalarType::Half, scalar_type, "_", [&] {
hipLaunchKernelGGL(( knn_kernel<scalar_t>), dim3(BLOCKS), dim3(THREADS), 0, stream,
x.data_ptr<scalar_t>(), y.data_ptr<scalar_t>(),
ptr_x.value().data_ptr<int64_t>(), ptr_y.value().data_ptr<int64_t>(),
row.data_ptr<int64_t>(), col.data_ptr<int64_t>(), k, x.size(0),
y.size(0), x.size(1), ptr_x.value().numel() - 1, cosine);
});
auto mask = col != -1;
return torch::stack({row.masked_select(mask), col.masked_select(mask)}, 0);
}
#include "hip/hip_runtime.h"
#include "nearest_hip.h"
#include <ATen/hip/HIPContext.h>
#include "utils.cuh"
#define THREADS 1024
template <typename scalar_t>
__global__ void nearest_kernel(const scalar_t *x, const scalar_t *y,
const int64_t *ptr_x, const int64_t *ptr_y,
int64_t *out, int64_t batch_size, int64_t dim) {
const int64_t thread_idx = threadIdx.x;
const int64_t n_x = blockIdx.x;
int64_t batch_idx;
for (int64_t b = 0; b < batch_size; b++) {
if (n_x >= ptr_x[b] && n_x < ptr_x[b + 1]) {
batch_idx = b;
break;
}
}
const int64_t y_start_idx = ptr_y[batch_idx];
const int64_t y_end_idx = ptr_y[batch_idx + 1];
__shared__ scalar_t best_dist[THREADS];
__shared__ int64_t best_dist_idx[THREADS];
scalar_t best = 1e38;
int64_t best_idx = 0;
for (int64_t n_y = y_start_idx + thread_idx; n_y < y_end_idx;
n_y += THREADS) {
scalar_t dist = 0;
for (int64_t d = 0; d < dim; d++) {
dist += (x[n_x * dim + d] - y[n_y * dim + d]) *
(x[n_x * dim + d] - y[n_y * dim + d]);
}
if (dist < best) {
best = dist;
best_idx = n_y;
}
}
best_dist[thread_idx] = best;
best_dist_idx[thread_idx] = best_idx;
for (int64_t u = 0; (1 << u) < THREADS; u++) {
__syncthreads();
if (thread_idx < (THREADS >> (u + 1))) {
int64_t idx_1 = (thread_idx * 2) << u;
int64_t idx_2 = (thread_idx * 2 + 1) << u;
if (best_dist[idx_1] > best_dist[idx_2]) {
best_dist[idx_1] = best_dist[idx_2];
best_dist_idx[idx_1] = best_dist_idx[idx_2];
}
}
}
__syncthreads();
if (thread_idx == 0) {
out[n_x] = best_dist_idx[0];
}
}
torch::Tensor nearest_cuda(torch::Tensor x, torch::Tensor y,
torch::Tensor ptr_x, torch::Tensor ptr_y) {
CHECK_CUDA(x);
CHECK_CUDA(y);
CHECK_CUDA(ptr_x);
CHECK_CUDA(ptr_y);
hipSetDevice(x.get_device());
x = x.view({x.size(0), -1}).contiguous();
y = y.view({y.size(0), -1}).contiguous();
auto out = torch::empty({x.size(0)}, ptr_x.options());
auto stream = at::hip::getCurrentHIPStreamMasqueradingAsCUDA();
auto scalar_type = x.scalar_type();
AT_DISPATCH_FLOATING_TYPES_AND(at::ScalarType::Half, scalar_type, "_", [&] {
hipLaunchKernelGGL(( nearest_kernel<scalar_t>), dim3(x.size(0)), dim3(THREADS), 0, stream,
x.data_ptr<scalar_t>(), y.data_ptr<scalar_t>(),
ptr_x.data_ptr<int64_t>(), ptr_y.data_ptr<int64_t>(),
out.data_ptr<int64_t>(), ptr_x.size(0) - 1, x.size(1));
});
return out;
}
#include "hip/hip_runtime.h"
#include "radius_hip.h"
#include <ATen/hip/HIPContext.h>
#include "utils.cuh"
#define THREADS 256
template <typename scalar_t>
__global__ void
radius_kernel(const scalar_t *__restrict__ x, const scalar_t *__restrict__ y,
const int64_t *__restrict__ ptr_x,
const int64_t *__restrict__ ptr_y, int64_t *__restrict__ row,
int64_t *__restrict__ col, const scalar_t r, const int64_t n,
const int64_t m, const int64_t dim, const int64_t num_examples,
const int64_t max_num_neighbors) {
const int64_t n_y = blockIdx.x * blockDim.x + threadIdx.x;
if (n_y >= m)
return;
int64_t count = 0;
const int64_t example_idx = get_example_idx(n_y, ptr_y, num_examples);
for (int64_t n_x = ptr_x[example_idx]; n_x < ptr_x[example_idx + 1]; n_x++) {
scalar_t dist = 0;
for (int64_t d = 0; d < dim; d++) {
dist += (x[n_x * dim + d] - y[n_y * dim + d]) *
(x[n_x * dim + d] - y[n_y * dim + d]);
}
if (dist < r) {
row[n_y * max_num_neighbors + count] = n_y;
col[n_y * max_num_neighbors + count] = n_x;
count++;
}
if (count >= max_num_neighbors)
break;
}
}
torch::Tensor radius_cuda(const torch::Tensor x, const torch::Tensor y,
torch::optional<torch::Tensor> ptr_x,
torch::optional<torch::Tensor> ptr_y, const double r,
const int64_t max_num_neighbors) {
CHECK_CUDA(x);
CHECK_CONTIGUOUS(x);
CHECK_INPUT(x.dim() == 2);
CHECK_CUDA(y);
CHECK_CONTIGUOUS(y);
CHECK_INPUT(y.dim() == 2);
CHECK_INPUT(x.size(1) == y.size(1));
hipSetDevice(x.get_device());
if (ptr_x.has_value()) {
CHECK_CUDA(ptr_x.value());
CHECK_INPUT(ptr_x.value().dim() == 1);
} else
ptr_x = torch::arange(0, x.size(0) + 1, x.size(0),
x.options().dtype(torch::kLong));
if (ptr_y.has_value()) {
CHECK_CUDA(ptr_y.value());
CHECK_INPUT(ptr_y.value().dim() == 1);
} else
ptr_y = torch::arange(0, y.size(0) + 1, y.size(0),
y.options().dtype(torch::kLong));
CHECK_INPUT(ptr_x.value().numel() == ptr_y.value().numel());
hipSetDevice(x.get_device());
auto row =
torch::full(y.size(0) * max_num_neighbors, -1, ptr_y.value().options());
auto col =
torch::full(y.size(0) * max_num_neighbors, -1, ptr_y.value().options());
dim3 BLOCKS((y.size(0) + THREADS - 1) / THREADS);
auto stream = at::hip::getCurrentHIPStreamMasqueradingAsCUDA();
auto scalar_type = x.scalar_type();
AT_DISPATCH_FLOATING_TYPES_AND(at::ScalarType::Half, scalar_type, "_", [&] {
hipLaunchKernelGGL(( radius_kernel<scalar_t>), dim3(BLOCKS), dim3(THREADS), 0, stream,
x.data_ptr<scalar_t>(), y.data_ptr<scalar_t>(),
ptr_x.value().data_ptr<int64_t>(), ptr_y.value().data_ptr<int64_t>(),
row.data_ptr<int64_t>(), col.data_ptr<int64_t>(), r * r, x.size(0),
y.size(0), x.size(1), ptr_x.value().numel() - 1, max_num_neighbors);
});
auto mask = row != -1;
return torch::stack({row.masked_select(mask), col.masked_select(mask)}, 0);
}
#include "hip/hip_runtime.h"
#include "rw_hip.h"
#include <ATen/hip/HIPContext.h>
#include <hiprand.h>
#include <hiprand_kernel.h>
#include "utils.cuh"
#define THREADS 1024
#define BLOCKS(N) (N + THREADS - 1) / THREADS
__global__ void uniform_sampling_kernel(const int64_t *rowptr,
const int64_t *col,
const int64_t *start, const float *rand,
int64_t *n_out, int64_t *e_out,
const int64_t walk_length,
const int64_t numel) {
const int64_t thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (thread_idx < numel) {
int64_t n_cur = start[thread_idx], e_cur, row_start, row_end, rnd;
n_out[thread_idx] = n_cur;
for (int64_t l = 0; l < walk_length; l++) {
row_start = rowptr[n_cur], row_end = rowptr[n_cur + 1];
if (row_end - row_start == 0) {
e_cur = -1;
} else {
rnd = int64_t(rand[l * numel + thread_idx] * (row_end - row_start));
e_cur = row_start + rnd;
n_cur = col[e_cur];
}
n_out[(l + 1) * numel + thread_idx] = n_cur;
e_out[l * numel + thread_idx] = e_cur;
}
}
}
__global__ void
rejection_sampling_kernel(unsigned int seed, const int64_t *rowptr,
const int64_t *col, const int64_t *start,
int64_t *n_out, int64_t *e_out,
const int64_t walk_length, const int64_t numel,
const double p, const double q) {
hiprandState_t state;
hiprand_init(seed, 0, 0, &state);
double max_prob = fmax(fmax(1. / p, 1.), 1. / q);
double prob_0 = 1. / p / max_prob;
double prob_1 = 1. / max_prob;
double prob_2 = 1. / q / max_prob;
const int64_t thread_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (thread_idx < numel) {
int64_t t = start[thread_idx], v, x, e_cur, row_start, row_end;
n_out[thread_idx] = t;
row_start = rowptr[t], row_end = rowptr[t + 1];
if (row_end - row_start == 0) {
e_cur = -1;
v = t;
} else {
e_cur = row_start + (hiprand(&state) % (row_end - row_start));
v = col[e_cur];
}
n_out[numel + thread_idx] = v;
e_out[thread_idx] = e_cur;
for (int64_t l = 1; l < walk_length; l++) {
row_start = rowptr[v], row_end = rowptr[v + 1];
if (row_end - row_start == 0) {
e_cur = -1;
x = v;
} else if (row_end - row_start == 1) {
e_cur = row_start;
x = col[e_cur];
} else {
while (true) {
e_cur = row_start + (hiprand(&state) % (row_end - row_start));
x = col[e_cur];
double r = hiprand_uniform(&state); // (0, 1]
if (x == t && r < prob_0)
break;
bool is_neighbor = false;
row_start = rowptr[x], row_end = rowptr[x + 1];
for (int64_t i = row_start; i < row_end; i++) {
if (col[i] == t) {
is_neighbor = true;
break;
}
}
if (is_neighbor && r < prob_1)
break;
else if (r < prob_2)
break;
}
}
n_out[(l + 1) * numel + thread_idx] = x;
e_out[l * numel + thread_idx] = e_cur;
t = v;
v = x;
}
}
}
std::tuple<torch::Tensor, torch::Tensor>
random_walk_cuda(torch::Tensor rowptr, torch::Tensor col, torch::Tensor start,
int64_t walk_length, double p, double q) {
CHECK_CUDA(rowptr);
CHECK_CUDA(col);
CHECK_CUDA(start);
hipSetDevice(rowptr.get_device());
CHECK_INPUT(rowptr.dim() == 1);
CHECK_INPUT(col.dim() == 1);
CHECK_INPUT(start.dim() == 1);
auto n_out = torch::empty({walk_length + 1, start.size(0)}, start.options());
auto e_out = torch::empty({walk_length, start.size(0)}, start.options());
auto stream = at::hip::getCurrentHIPStreamMasqueradingAsCUDA();
if (p == 1. && q == 1.) {
auto rand = torch::rand({start.size(0), walk_length},
start.options().dtype(torch::kFloat));
hipLaunchKernelGGL(( uniform_sampling_kernel), dim3(BLOCKS(start.numel())), dim3(THREADS), 0, stream,
rowptr.data_ptr<int64_t>(), col.data_ptr<int64_t>(),
start.data_ptr<int64_t>(), rand.data_ptr<float>(),
n_out.data_ptr<int64_t>(), e_out.data_ptr<int64_t>(), walk_length,
start.numel());
} else {
hipLaunchKernelGGL(( rejection_sampling_kernel), dim3(BLOCKS(start.numel())), dim3(THREADS), 0, stream,
time(NULL), rowptr.data_ptr<int64_t>(), col.data_ptr<int64_t>(),
start.data_ptr<int64_t>(), n_out.data_ptr<int64_t>(),
e_out.data_ptr<int64_t>(), walk_length, start.numel(), p, q);
}
return std::make_tuple(n_out.t().contiguous(), e_out.t().contiguous());
}
......@@ -3,12 +3,12 @@
#include "cpu/knn_cpu.h"
#ifdef WITH_HIP
#include "hip/knn_hip.h"
#ifdef WITH_CUDA
#include "cuda/knn_cuda.h"
#endif
#ifdef _WIN32
#ifdef WITH_HIP
#ifdef WITH_CUDA
PyMODINIT_FUNC PyInit__knn_cuda(void) { return NULL; }
#else
PyMODINIT_FUNC PyInit__knn_cpu(void) { return NULL; }
......@@ -20,7 +20,7 @@ torch::Tensor knn(torch::Tensor x, torch::Tensor y,
torch::optional<torch::Tensor> ptr_y, int64_t k, bool cosine,
int64_t num_workers) {
if (x.device().is_cuda()) {
#ifdef WITH_HIP
#ifdef WITH_CUDA
return knn_cuda(x, y, ptr_x, ptr_y, k, cosine);
#else
AT_ERROR("Not compiled with CUDA support");
......
#include <Python.h>
#include <torch/script.h>
#ifdef WITH_HIP
#include "hip/nearest_hip.h"
#ifdef WITH_CUDA
#include "cuda/nearest_cuda.h"
#endif
#ifdef _WIN32
#ifdef WITH_HIP
#ifdef WITH_CUDA
PyMODINIT_FUNC PyInit__nearest_cuda(void) { return NULL; }
#else
PyMODINIT_FUNC PyInit__nearest_cpu(void) { return NULL; }
......@@ -16,7 +16,7 @@ PyMODINIT_FUNC PyInit__nearest_cpu(void) { return NULL; }
torch::Tensor nearest(torch::Tensor x, torch::Tensor y, torch::Tensor ptr_x,
torch::Tensor ptr_y) {
if (x.device().is_cuda()) {
#ifdef WITH_HIP
#ifdef WITH_CUDA
return nearest_cuda(x, y, ptr_x, ptr_y);
#else
AT_ERROR("Not compiled with CUDA support");
......
......@@ -3,12 +3,12 @@
#include "cpu/radius_cpu.h"
#ifdef WITH_HIP
#include "hip/radius_hip.h"
#ifdef WITH_CUDA
#include "cuda/radius_cuda.h"
#endif
#ifdef _WIN32
#ifdef WITH_HIP
#ifdef WITH_CUDA
PyMODINIT_FUNC PyInit__radius_cuda(void) { return NULL; }
#else
PyMODINIT_FUNC PyInit__radius_cpu(void) { return NULL; }
......@@ -20,7 +20,7 @@ torch::Tensor radius(torch::Tensor x, torch::Tensor y,
torch::optional<torch::Tensor> ptr_y, double r,
int64_t max_num_neighbors, int64_t num_workers) {
if (x.device().is_cuda()) {
#ifdef WITH_HIP
#ifdef WITH_CUDA
return radius_cuda(x, y, ptr_x, ptr_y, r, max_num_neighbors);
#else
AT_ERROR("Not compiled with CUDA support");
......
......@@ -3,12 +3,12 @@
#include "cpu/rw_cpu.h"
#ifdef WITH_HIP
#include "hip/rw_hip.h"
#ifdef WITH_CUDA
#include "cuda/rw_cuda.h"
#endif
#ifdef _WIN32
#ifdef WITH_HIP
#ifdef WITH_CUDA
PyMODINIT_FUNC PyInit__rw_cuda(void) { return NULL; }
#else
PyMODINIT_FUNC PyInit__rw_cpu(void) { return NULL; }
......@@ -19,7 +19,7 @@ std::tuple<torch::Tensor, torch::Tensor>
random_walk(torch::Tensor rowptr, torch::Tensor col, torch::Tensor start,
int64_t walk_length, double p, double q) {
if (rowptr.device().is_cuda()) {
#ifdef WITH_HIP
#ifdef WITH_CUDA
return random_walk_cuda(rowptr, col, start, walk_length, p, q);
#else
AT_ERROR("Not compiled with CUDA support");
......
......@@ -4,7 +4,7 @@
#include "cpu/sampler_cpu.h"
#ifdef _WIN32
#ifdef WITH_HIP
#ifdef WITH_CUDA
PyMODINIT_FUNC PyInit__sampler_cuda(void) { return NULL; }
#else
PyMODINIT_FUNC PyInit__sampler_cpu(void) { return NULL; }
......@@ -14,7 +14,7 @@ PyMODINIT_FUNC PyInit__sampler_cpu(void) { return NULL; }
torch::Tensor neighbor_sampler(torch::Tensor start, torch::Tensor rowptr,
int64_t count, double factor) {
if (rowptr.device().is_cuda()) {
#ifdef WITH_HIP
#ifdef WITH_CUDA
AT_ERROR("No CUDA version supported");
#else
AT_ERROR("Not compiled with CUDA support");
......
#include <Python.h>
#include <torch/script.h>
#ifdef WITH_HIP
#include <hip/hip_runtime.h>
#ifdef WITH_CUDA
#include <cuda.h>
#endif
#ifdef _WIN32
#ifdef WITH_HIP
#ifdef WITH_CUDA
PyMODINIT_FUNC PyInit__version_cuda(void) { return NULL; }
#else
PyMODINIT_FUNC PyInit__version_cpu(void) { return NULL; }
......@@ -14,8 +14,8 @@ PyMODINIT_FUNC PyInit__version_cpu(void) { return NULL; }
#endif
int64_t cuda_version() {
#ifdef WITH_HIP
return TORCH_HIP_VERSION;
#ifdef WITH_CUDA
return CUDA_VERSION;
#else
return -1;
#endif
......
[metadata]
long_description = file: README.md
long_description_content_type = text/markdown
classifiers =
Development Status :: 5 - Production/Stable
License :: OSI Approved :: MIT License
Programming Language :: Python
Programming Language :: Python :: 3.7
Programming Language :: Python :: 3.8
Programming Language :: Python :: 3.9
Programming Language :: Python :: 3.10
Programming Language :: Python :: 3 :: Only
long_description=file: README.md
long_description_content_type=text/markdown
classifiers =
Development Status :: 5 - Production/Stable
License :: OSI Approved :: MIT License
Programming Language :: Python
Programming Language :: Python :: 3.7
Programming Language :: Python :: 3.8
Programming Language :: Python :: 3.9
Programming Language :: Python :: 3.10
Programming Language :: Python :: 3 :: Only
[aliases]
test = pytest
[tool:pytest]
addopts = --capture=no
[egg_info]
tag_build =
tag_date = 0
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment