test_knn.py 1.42 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
from itertools import product

import pytest
import torch
rusty1s's avatar
rusty1s committed
5
from torch_cluster import knn, knn_graph
rusty1s's avatar
rusty1s committed
6

rusty1s's avatar
rusty1s committed
7
from .utils import grad_dtypes, devices, tensor
rusty1s's avatar
rusty1s committed
8
9
10


@pytest.mark.parametrize('dtype,device', product(grad_dtypes, devices))
rusty1s's avatar
rusty1s committed
11
def test_knn(dtype, device):
rusty1s's avatar
rusty1s committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
    x = tensor([
        [-1, -1],
        [-1, +1],
        [+1, +1],
        [+1, -1],
        [-1, -1],
        [-1, +1],
        [+1, +1],
        [+1, -1],
    ], dtype, device)
    y = tensor([
        [1, 0],
        [-1, 0],
    ], dtype, device)

    batch_x = tensor([0, 0, 0, 0, 1, 1, 1, 1], torch.long, device)
    batch_y = tensor([0, 1], torch.long, device)

rusty1s's avatar
rusty1s committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
    row, col = knn(x, y, 2, batch_x, batch_y)
    col = col.view(-1, 2).sort(dim=-1)[0].view(-1)

    assert row.tolist() == [0, 0, 1, 1]
    assert col.tolist() == [2, 3, 4, 5]


@pytest.mark.parametrize('dtype,device', product(grad_dtypes, devices))
def test_knn_graph(dtype, device):
    x = tensor([
        [-1, -1],
        [-1, +1],
        [+1, +1],
        [+1, -1],
    ], dtype, device)

rusty1s's avatar
rusty1s committed
46
    row, col = knn_graph(x, k=2, flow='target_to_source')
rusty1s's avatar
rusty1s committed
47
48
49
50
    col = col.view(-1, 2).sort(dim=-1)[0].view(-1)

    assert row.tolist() == [0, 0, 1, 1, 2, 2, 3, 3]
    assert col.tolist() == [1, 3, 0, 2, 1, 3, 0, 2]
rusty1s's avatar
rusty1s committed
51
52
53
54
55
56

    row, col = knn_graph(x, k=2, flow='source_to_target')
    row = row.view(-1, 2).sort(dim=-1)[0].view(-1)

    assert row.tolist() == [1, 3, 0, 2, 1, 3, 0, 2]
    assert col.tolist() == [0, 0, 1, 1, 2, 2, 3, 3]