nearest.py 3.35 KB
Newer Older
quyuanhao123's avatar
quyuanhao123 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
from typing import Optional

import torch
import scipy.cluster


def nearest(x: torch.Tensor, y: torch.Tensor,
            batch_x: Optional[torch.Tensor] = None,
            batch_y: Optional[torch.Tensor] = None) -> torch.Tensor:
    r"""Clusters points in :obj:`x` together which are nearest to a given query
    point in :obj:`y`.

    Args:
        x (Tensor): Node feature matrix
            :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`.
        y (Tensor): Node feature matrix
            :math:`\mathbf{Y} \in \mathbb{R}^{M \times F}`.
        batch_x (LongTensor, optional): Batch vector
            :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
            node to a specific example. :obj:`batch_x` needs to be sorted.
            (default: :obj:`None`)
        batch_y (LongTensor, optional): Batch vector
            :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^M`, which assigns each
            node to a specific example. :obj:`batch_y` needs to be sorted.
            (default: :obj:`None`)

    :rtype: :class:`LongTensor`

    .. code-block:: python

        import torch
        from torch_cluster import nearest

        x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
        batch_x = torch.tensor([0, 0, 0, 0])
        y = torch.Tensor([[-1, 0], [1, 0]])
        batch_y = torch.tensor([0, 0])
        cluster = nearest(x, y, batch_x, batch_y)
    """

    x = x.view(-1, 1) if x.dim() == 1 else x
    y = y.view(-1, 1) if y.dim() == 1 else y
    assert x.size(1) == y.size(1)

    if x.is_cuda:
        if batch_x is not None:
            assert x.size(0) == batch_x.numel()
            batch_size = int(batch_x.max()) + 1

            deg = x.new_zeros(batch_size, dtype=torch.long)
            deg.scatter_add_(0, batch_x, torch.ones_like(batch_x))

            ptr_x = deg.new_zeros(batch_size + 1)
            torch.cumsum(deg, 0, out=ptr_x[1:])
        else:
            ptr_x = torch.tensor([0, x.size(0)], device=x.device)

        if batch_y is not None:
            assert y.size(0) == batch_y.numel()
            batch_size = int(batch_y.max()) + 1

            deg = y.new_zeros(batch_size, dtype=torch.long)
            deg.scatter_add_(0, batch_y, torch.ones_like(batch_y))

            ptr_y = deg.new_zeros(batch_size + 1)
            torch.cumsum(deg, 0, out=ptr_y[1:])
        else:
            ptr_y = torch.tensor([0, y.size(0)], device=y.device)

        return torch.ops.torch_cluster.nearest(x, y, ptr_x, ptr_y)
    else:
        # Translate and rescale x and y to [0, 1].
        if batch_x is not None and batch_y is not None:
            assert x.dim() == 2 and batch_x.dim() == 1
            assert y.dim() == 2 and batch_y.dim() == 1
            assert x.size(0) == batch_x.size(0)
            assert y.size(0) == batch_y.size(0)

            min_xy = min(x.min().item(), y.min().item())
            x, y = x - min_xy, y - min_xy

            max_xy = max(x.max().item(), y.max().item())
            x.div_(max_xy)
            y.div_(max_xy)

            # Concat batch/features to ensure no cross-links between examples.
            D = x.size(-1)
            x = torch.cat([x, 2 * D * batch_x.view(-1, 1).to(x.dtype)], -1)
            y = torch.cat([y, 2 * D * batch_y.view(-1, 1).to(y.dtype)], -1)

        return torch.from_numpy(
            scipy.cluster.vq.vq(x.detach().cpu(),
                                y.detach().cpu())[0]).to(torch.long)