fps.py 2.32 KB
Newer Older
quyuanhao123's avatar
quyuanhao123 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from typing import Optional

import torch
from torch import Tensor


@torch.jit._overload  # noqa
def fps(src, batch=None, ratio=None, random_start=True):  # noqa
    # type: (Tensor, Optional[Tensor], Optional[float], bool) -> Tensor
    pass  # pragma: no cover


@torch.jit._overload  # noqa
def fps(src, batch=None, ratio=None, random_start=True):  # noqa
    # type: (Tensor, Optional[Tensor], Optional[Tensor], bool) -> Tensor
    pass  # pragma: no cover


def fps(src: torch.Tensor, batch=None, ratio=None, random_start=True):  # noqa
    r""""A sampling algorithm from the `"PointNet++: Deep Hierarchical Feature
    Learning on Point Sets in a Metric Space"
    <https://arxiv.org/abs/1706.02413>`_ paper, which iteratively samples the
    most distant point with regard to the rest points.

    Args:
        src (Tensor): Point feature matrix
            :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`.
        batch (LongTensor, optional): Batch vector
            :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
            node to a specific example. (default: :obj:`None`)
        ratio (float or Tensor, optional): Sampling ratio.
            (default: :obj:`0.5`)
        random_start (bool, optional): If set to :obj:`False`, use the first
            node in :math:`\mathbf{X}` as starting node. (default: obj:`True`)

    :rtype: :class:`LongTensor`


    .. code-block:: python

        import torch
        from torch_cluster import fps

        src = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
        batch = torch.tensor([0, 0, 0, 0])
        index = fps(src, batch, ratio=0.5)
    """

    r: Optional[Tensor] = None
    if ratio is None:
        r = torch.tensor(0.5, dtype=src.dtype, device=src.device)
    elif isinstance(ratio, float):
        r = torch.tensor(ratio, dtype=src.dtype, device=src.device)
    else:
        r = ratio
    assert r is not None

    if batch is not None:
        assert src.size(0) == batch.numel()
        batch_size = int(batch.max()) + 1

        deg = src.new_zeros(batch_size, dtype=torch.long)
        deg.scatter_add_(0, batch, torch.ones_like(batch))

        ptr = deg.new_zeros(batch_size + 1)
        torch.cumsum(deg, 0, out=ptr[1:])
    else:
        ptr = torch.tensor([0, src.size(0)], device=src.device)

    return torch.ops.torch_cluster.fps(src, ptr, r, random_start)