PKG-INFO 13.2 KB
Newer Older
quyuanhao123's avatar
quyuanhao123 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
Metadata-Version: 2.1
Name: torch_cluster
Version: 1.6.0
Summary: PyTorch Extension Library of Optimized Graph Cluster Algorithms
Home-page: https://github.com/rusty1s/pytorch_cluster
Author: Matthias Fey
Author-email: matthias.fey@tu-dortmund.de
License: UNKNOWN
Download-URL: https://github.com/rusty1s/pytorch_cluster/archive/1.6.0.tar.gz
Description: [pypi-image]: https://badge.fury.io/py/torch-cluster.svg
        [pypi-url]: https://pypi.python.org/pypi/torch-cluster
        [testing-image]: https://github.com/rusty1s/pytorch_cluster/actions/workflows/testing.yml/badge.svg
        [testing-url]: https://github.com/rusty1s/pytorch_cluster/actions/workflows/testing.yml
        [linting-image]: https://github.com/rusty1s/pytorch_cluster/actions/workflows/linting.yml/badge.svg
        [linting-url]: https://github.com/rusty1s/pytorch_cluster/actions/workflows/linting.yml
        [coverage-image]: https://codecov.io/gh/rusty1s/pytorch_cluster/branch/master/graph/badge.svg
        [coverage-url]: https://codecov.io/github/rusty1s/pytorch_cluster?branch=master
        
        # PyTorch Cluster
        
        [![PyPI Version][pypi-image]][pypi-url]
        [![Testing Status][testing-image]][testing-url]
        [![Linting Status][linting-image]][linting-url]
        [![Code Coverage][coverage-image]][coverage-url]
        
        --------------------------------------------------------------------------------
        
        This package consists of a small extension library of highly optimized graph cluster algorithms for the use in [PyTorch](http://pytorch.org/).
        The package consists of the following clustering algorithms:
        
        * **[Graclus](#graclus)** from Dhillon *et al.*: [Weighted Graph Cuts without Eigenvectors: A Multilevel Approach](http://www.cs.utexas.edu/users/inderjit/public_papers/multilevel_pami.pdf) (PAMI 2007)
        * **[Voxel Grid Pooling](#voxelgrid)** from, *e.g.*, Simonovsky and Komodakis: [Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs](https://arxiv.org/abs/1704.02901) (CVPR 2017)
        * **[Iterative Farthest Point Sampling](#farthestpointsampling)** from, *e.g.* Qi *et al.*: [PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space](https://arxiv.org/abs/1706.02413) (NIPS 2017)
        * **[k-NN](#knn-graph)** and **[Radius](#radius-graph)** graph generation
        * Clustering based on **[Nearest](#nearest)** points
        * **[Random Walk Sampling](#randomwalk-sampling)** from, *e.g.*, Grover and Leskovec: [node2vec: Scalable Feature Learning for Networks](https://arxiv.org/abs/1607.00653) (KDD 2016)
        
        All included operations work on varying data types and are implemented both for CPU and GPU.
        
        ## Installation
        
        ### Anaconda
        
        **Update:** You can now install `pytorch-cluster` via [Anaconda](https://anaconda.org/pyg/pytorch-cluster) for all major OS/PyTorch/CUDA combinations 🤗
        Given that you have [`pytorch >= 1.8.0` installed](https://pytorch.org/get-started/locally/), simply run
        
        ```
        conda install pytorch-cluster -c pyg
        ```
        
        ### Binaries
        
        We alternatively provide pip wheels for all major OS/PyTorch/CUDA combinations, see [here](https://data.pyg.org/whl).
        
        #### PyTorch 1.11
        
        To install the binaries for PyTorch 1.11.0, simply run
        
        ```
        pip install torch-cluster -f https://data.pyg.org/whl/torch-1.11.0+${CUDA}.html
        ```
        
        where `${CUDA}` should be replaced by either `cpu`, `cu102`, `cu113`, or `cu115` depending on your PyTorch installation.
        
        |             | `cpu` | `cu102` | `cu113` | `cu115` |
        |-------------|-------|---------|---------|---------|
        | **Linux**   | ✅    | ✅      | ✅      | ✅      |
        | **Windows** | ✅    |         | ✅      | ✅      |
        | **macOS**   | ✅    |         |         |         |
        
        #### PyTorch 1.10
        
        To install the binaries for PyTorch 1.10.0, PyTorch 1.10.1 and PyTorch 1.10.2, simply run
        
        ```
        pip install torch-cluster -f https://data.pyg.org/whl/torch-1.10.0+${CUDA}.html
        ```
        
        where `${CUDA}` should be replaced by either `cpu`, `cu102`, `cu111`, or `cu113` depending on your PyTorch installation.
        
        |             | `cpu` | `cu102` | `cu111` | `cu113` |
        |-------------|-------|---------|---------|---------|
        | **Linux**   | ✅    | ✅      | ✅      | ✅      |
        | **Windows** | ✅    | ✅      | ✅      | ✅      |
        | **macOS**   | ✅    |         |         |         |
        
        **Note:** Binaries of older versions are also provided for PyTorch 1.4.0, PyTorch 1.5.0, PyTorch 1.6.0, PyTorch 1.7.0/1.7.1, PyTorch 1.8.0/1.8.1 and PyTorch 1.9.0 (following the same procedure).
        For older versions, you might need to explicitly specify the latest supported version number in order to prevent a manual installation from source.
        You can look up the latest supported version number [here](https://data.pyg.org/whl).
        
        ### From source
        
        Ensure that at least PyTorch 1.4.0 is installed and verify that `cuda/bin` and `cuda/include` are in your `$PATH` and `$CPATH` respectively, *e.g.*:
        
        ```
        $ python -c "import torch; print(torch.__version__)"
        >>> 1.4.0
        
        $ python -c "import torch; print(torch.__version__)"
        >>> 1.1.0
        
        $ echo $PATH
        >>> /usr/local/cuda/bin:...
        
        $ echo $CPATH
        >>> /usr/local/cuda/include:...
        ```
        
        Then run:
        
        ```
        pip install torch-cluster
        ```
        
        When running in a docker container without NVIDIA driver, PyTorch needs to evaluate the compute capabilities and may fail.
        In this case, ensure that the compute capabilities are set via `TORCH_CUDA_ARCH_LIST`, *e.g.*:
        
        ```
        export TORCH_CUDA_ARCH_LIST = "6.0 6.1 7.2+PTX 7.5+PTX"
        ```
        
        ## Functions
        
        ### Graclus
        
        A greedy clustering algorithm of picking an unmarked vertex and matching it with one its unmarked neighbors (that maximizes its edge weight).
        The GPU algorithm is adapted from Fagginger Auer and Bisseling: [A GPU Algorithm for Greedy Graph Matching](http://www.staff.science.uu.nl/~bisse101/Articles/match12.pdf) (LNCS 2012)
        
        ```python
        import torch
        from torch_cluster import graclus_cluster
        
        row = torch.tensor([0, 1, 1, 2])
        col = torch.tensor([1, 0, 2, 1])
        weight = torch.tensor([1., 1., 1., 1.])  # Optional edge weights.
        
        cluster = graclus_cluster(row, col, weight)
        ```
        
        ```
        print(cluster)
        tensor([0, 0, 1])
        ```
        
        ### VoxelGrid
        
        A clustering algorithm, which overlays a regular grid of user-defined size over a point cloud and clusters all points within a voxel.
        
        ```python
        import torch
        from torch_cluster import grid_cluster
        
        pos = torch.tensor([[0., 0.], [11., 9.], [2., 8.], [2., 2.], [8., 3.]])
        size = torch.Tensor([5, 5])
        
        cluster = grid_cluster(pos, size)
        ```
        
        ```
        print(cluster)
        tensor([0, 5, 3, 0, 1])
        ```
        
        ### FarthestPointSampling
        
        A sampling algorithm, which iteratively samples the most distant point with regard to the rest points.
        
        ```python
        import torch
        from torch_cluster import fps
        
        x = torch.tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]])
        batch = torch.tensor([0, 0, 0, 0])
        index = fps(x, batch, ratio=0.5, random_start=False)
        ```
        
        ```
        print(index)
        tensor([0, 3])
        ```
        
        ### kNN-Graph
        
        Computes graph edges to the nearest *k* points.
        
        **Args:**
        
        * **x** *(Tensor)*: Node feature matrix of shape `[N, F]`.
        * **k** *(int)*: The number of neighbors.
        * **batch** *(LongTensor, optional)*: Batch vector of shape `[N]`, which assigns each node to a specific example. `batch` needs to be sorted. (default: `None`)
        * **loop** *(bool, optional)*: If `True`, the graph will contain self-loops. (default: `False`)
        * **flow** *(string, optional)*: The flow direction when using in combination with message passing (`"source_to_target"` or `"target_to_source"`). (default: `"source_to_target"`)
        * **cosine** *(boolean, optional)*: If `True`, will use the Cosine distance instead of Euclidean distance to find nearest neighbors. (default: `False`)
        * **num_workers** *(int)*: Number of workers to use for computation. Has no effect in case `batch` is not `None`, or the input lies on the GPU. (default: `1`)
        
        ```python
        import torch
        from torch_cluster import knn_graph
        
        x = torch.tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]])
        batch = torch.tensor([0, 0, 0, 0])
        edge_index = knn_graph(x, k=2, batch=batch, loop=False)
        ```
        
        ```
        print(edge_index)
        tensor([[1, 2, 0, 3, 0, 3, 1, 2],
                [0, 0, 1, 1, 2, 2, 3, 3]])
        ```
        
        ### Radius-Graph
        
        Computes graph edges to all points within a given distance.
        
        **Args:**
        
        * **x** *(Tensor)*: Node feature matrix of shape `[N, F]`.
        * **r** *(float)*: The radius.
        * **batch** *(LongTensor, optional)*: Batch vector of shape `[N]`, which assigns each node to a specific example. `batch` needs to be sorted. (default: `None`)
        * **loop** *(bool, optional)*: If `True`, the graph will contain self-loops. (default: `False`)
        * **max_num_neighbors** *(int, optional)*: The maximum number of neighbors to return for each element. If the number of actual neighbors is greater than `max_num_neighbors`, returned neighbors are picked randomly. (default: `32`)
        * **flow** *(string, optional)*: The flow direction when using in combination with message passing (`"source_to_target"` or `"target_to_source"`). (default: `"source_to_target"`)
        * **num_workers** *(int)*: Number of workers to use for computation. Has no effect in case `batch` is not `None`, or the input lies on the GPU. (default: `1`)
        
        ```python
        import torch
        from torch_cluster import radius_graph
        
        x = torch.tensor([[-1., -1.], [-1., 1.], [1., -1.], [1., 1.]])
        batch = torch.tensor([0, 0, 0, 0])
        edge_index = radius_graph(x, r=2.5, batch=batch, loop=False)
        ```
        
        ```
        print(edge_index)
        tensor([[1, 2, 0, 3, 0, 3, 1, 2],
                [0, 0, 1, 1, 2, 2, 3, 3]])
        ```
        
        ### Nearest
        
        Clusters points in *x* together which are nearest to a given query point in *y*.
        `batch_{x,y}` vectors need to be sorted.
        
        ```python
        import torch
        from torch_cluster import nearest
        
        x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
        batch_x = torch.tensor([0, 0, 0, 0])
        y = torch.Tensor([[-1, 0], [1, 0]])
        batch_y = torch.tensor([0, 0])
        cluster = nearest(x, y, batch_x, batch_y)
        ```
        
        ```
        print(cluster)
        tensor([0, 0, 1, 1])
        ```
        
        ### RandomWalk-Sampling
        
        Samples random walks of length `walk_length` from all node indices in `start` in the graph given by `(row, col)`.
        
        ```python
        import torch
        from torch_cluster import random_walk
        
        row = torch.tensor([0, 1, 1, 1, 2, 2, 3, 3, 4, 4])
        col = torch.tensor([1, 0, 2, 3, 1, 4, 1, 4, 2, 3])
        start = torch.tensor([0, 1, 2, 3, 4])
        
        walk = random_walk(row, col, start, walk_length=3)
        ```
        
        ```
        print(walk)
        tensor([[0, 1, 2, 4],
                [1, 3, 4, 2],
                [2, 4, 2, 1],
                [3, 4, 2, 4],
                [4, 3, 1, 0]])
        ```
        
        ## Running tests
        
        ```
        pytest
        ```
        
        ## C++ API
        
        `torch-cluster` also offers a C++ API that contains C++ equivalent of python models.
        
        ```
        mkdir build
        cd build
        # Add -DWITH_CUDA=on support for the CUDA if needed
        cmake ..
        make
        make install
        ```
        
Keywords: pytorch,geometric-deep-learning,graph-neural-networks,cluster-algorithms
Platform: UNKNOWN
Classifier: Development Status :: 5 - Production/Stable
Classifier: License :: OSI Approved :: MIT License
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3 :: Only
Requires-Python: >=3.7
Description-Content-Type: text/markdown
Provides-Extra: test