neighbors.cpp 5.54 KB
Newer Older
Alexander Liao's avatar
Alexander Liao committed
1

2
// 3D Version https://github.com/HuguesTHOMAS/KPConv
Alexander Liao's avatar
Alexander Liao committed
3
4
5
6

#include "neighbors.h"

template<typename scalar_t>
7
8
size_t nanoflann_neighbors(vector<scalar_t>& queries, vector<scalar_t>& supports,
			vector<size_t>*& neighbors_indices, double radius, int dim, int64_t max_num){
Alexander Liao's avatar
Alexander Liao committed
9
10
11
12

	const scalar_t search_radius = static_cast<scalar_t>(radius*radius);

	// Counting vector
13
	size_t max_count = 1;
Alexander Liao's avatar
Alexander Liao committed
14
15
16
17
18
19
20
21
22

	// CLoud variable
	PointCloud<scalar_t> pcd;
	pcd.set(supports, dim);
	//Cloud query
	PointCloud<scalar_t> pcd_query;
	pcd_query.set(queries, dim);

	// Tree parameters
23
	nanoflann::KDTreeSingleIndexAdaptorParams tree_params(15 /* max leaf */);
Alexander Liao's avatar
Alexander Liao committed
24
25
26
27
28
29
30
31
32
33
34
35
36

	// KDTree type definition
	typedef nanoflann::KDTreeSingleIndexAdaptor< nanoflann::L2_Adaptor<scalar_t, PointCloud<scalar_t> > , PointCloud<scalar_t>> my_kd_tree_t;

	// Pointer to trees
	my_kd_tree_t* index;
	index = new my_kd_tree_t(dim, pcd, tree_params);
	index->buildIndex();
	// Search neigbors indices
	// ***********************

	// Search params
	nanoflann::SearchParams search_params;
37
	// search_params.sorted = true;
Alexander Liao's avatar
Alexander Liao committed
38
39
	std::vector< std::vector<std::pair<size_t, scalar_t> > > list_matches(pcd_query.pts.size());

40
	double eps = 0.000001;
Alexander Liao's avatar
Alexander Liao committed
41

42
43
44
	// indices
	size_t i0 = 0;

45
46
	for (auto& p : pcd_query.pts){
		auto p0 = *p;
Alexander Liao's avatar
Alexander Liao committed
47
		// Find neighbors
Alexander Liao's avatar
Alexander Liao committed
48
		scalar_t* query_pt = new scalar_t[dim];
Alexander Liao's avatar
Alexander Liao committed
49
50
51
52
53
		std::copy(p0.begin(), p0.end(), query_pt); 

		list_matches[i0].reserve(max_count);
		std::vector<std::pair<size_t, scalar_t> > ret_matches;

54
		const size_t nMatches = index->radiusSearch(query_pt, (scalar_t)(search_radius+eps), ret_matches, search_params);
55
		
Alexander Liao's avatar
Alexander Liao committed
56
57
58
59
60
61
62
63
64
65
		list_matches[i0] = ret_matches;
		if(max_count < nMatches) max_count = nMatches;
		i0++;

	}
	// Reserve the memory
	if(max_num > 0) {
		max_count = max_num;
	}
	
66
	size_t size = 0; // total number of edges
Alexander Liao's avatar
Alexander Liao committed
67
68
69
70
71
72
	for (auto& inds : list_matches){
		if(inds.size() <= max_count)
			size += inds.size();
		else
			size += max_count;
	}
73

74
	neighbors_indices->resize(size*2);
75
76
	size_t i1 = 0; // index of the query points
	size_t u = 0; // curent index of the neighbors_indices
Alexander Liao's avatar
Alexander Liao committed
77
	for (auto& inds : list_matches){
78
		for (size_t j = 0; j < max_count; j++){
Alexander Liao's avatar
Alexander Liao committed
79
			if(j < inds.size()){
80
81
				(*neighbors_indices)[u] = inds[j].first;
				(*neighbors_indices)[u + 1] = i1;
Alexander Liao's avatar
Alexander Liao committed
82
83
84
85
86
87
88
89
90
91
92
				u += 2;
			}
		}
		i1++;
	}

	return max_count;




93
94
95
}

template<typename scalar_t>
96
size_t batch_nanoflann_neighbors (vector<scalar_t>& queries,
97
98
99
                               vector<scalar_t>& supports,
                               vector<long>& q_batches,
                               vector<long>& s_batches,
100
101
                               vector<size_t>*& neighbors_indices,
                               double radius, int dim, int64_t max_num){
102
103
104
105
106


// Initiate variables
// ******************
// indices
107
	size_t i0 = 0;
108
109
110
111
112

// Square radius
	const scalar_t r2 = static_cast<scalar_t>(radius*radius);

	// Counting vector
113
	size_t max_count = 0;
114
115

	// batch index
116
117
118
	size_t b = 0;
	size_t sum_qb = 0;
	size_t sum_sb = 0;
119

120
	double eps = 0.000001;
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
	// Nanoflann related variables
	// ***************************

	// CLoud variable
	PointCloud<scalar_t> current_cloud;
	PointCloud<scalar_t> query_pcd;
	query_pcd.set(queries, dim);
	vector<vector<pair<size_t, scalar_t> > > all_inds_dists(query_pcd.pts.size());

	// Tree parameters
	nanoflann::KDTreeSingleIndexAdaptorParams tree_params(10 /* max leaf */);

	// KDTree type definition
	typedef nanoflann::KDTreeSingleIndexAdaptor< nanoflann::L2_Adaptor<scalar_t, PointCloud<scalar_t> > , PointCloud<scalar_t>> my_kd_tree_t;

// Pointer to trees
	my_kd_tree_t* index;
    // Build KDTree for the first batch element
	current_cloud.set_batch(supports, sum_sb, s_batches[b], dim);
	index = new my_kd_tree_t(dim, current_cloud, tree_params);
	index->buildIndex();
// Search neigbors indices
// ***********************
// Search params
	nanoflann::SearchParams search_params;
	search_params.sorted = true;

148
149
	for (auto& p : query_pcd.pts){
		auto p0 = *p;
150
151
// Check if we changed batch

152
		scalar_t* query_pt = new scalar_t[dim];
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
		std::copy(p0.begin(), p0.end(), query_pt); 

		if (i0 == sum_qb + q_batches[b]){
			sum_qb += q_batches[b];
			sum_sb += s_batches[b];
			b++;

// Change the points
			current_cloud.pts.clear();
			current_cloud.set_batch(supports, sum_sb, s_batches[b], dim);
// Build KDTree of the current element of the batch
			delete index;
			index = new my_kd_tree_t(dim, current_cloud, tree_params);
			index->buildIndex();
		}
// Initial guess of neighbors size
		all_inds_dists[i0].reserve(max_count);
// Find neighbors
		size_t nMatches = index->radiusSearch(query_pt, r2+eps, all_inds_dists[i0], search_params);
// Update max count

		std::vector<std::pair<size_t, float> > indices_dists;
		nanoflann::RadiusResultSet<float,size_t> resultSet(r2, indices_dists);

		index->findNeighbors(resultSet, query_pt, search_params);

		if (nMatches > max_count)
			max_count = nMatches;
// Increment query idx
		i0++;
	}
	// how many neighbors do we keep
	if(max_num > 0) {
		max_count = max_num;
	}
// Reserve the memory
	
190
	size_t size = 0; // total number of edges
191
192
193
194
195
196
	for (auto& inds_dists : all_inds_dists){
		if(inds_dists.size() <= max_count)
			size += inds_dists.size();
		else
			size += max_count;
	}
197
	neighbors_indices->resize(size * 2);
198
199
200
201
	i0 = 0;
	sum_sb = 0;
	sum_qb = 0;
	b = 0;
202
	size_t u = 0;
203
204
205
206
207
208
	for (auto& inds_dists : all_inds_dists){
		if (i0 == sum_qb + q_batches[b]){
			sum_qb += q_batches[b];
			sum_sb += s_batches[b];
			b++;
		}
209
		for (size_t j = 0; j < max_count; j++){
210
			if (j < inds_dists.size()){
211
212
				(*neighbors_indices)[u] = inds_dists[j].first + sum_sb;
				(*neighbors_indices)[u + 1] = i0;
213
214
215
216
217
218
219
220
				u += 2;
			}
		}
		i0++;
	}
	
	return max_count;
}