neighbors.cpp 6.63 KB
Newer Older
Alexander Liao's avatar
Alexander Liao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

// Taken from https://github.com/HuguesTHOMAS/KPConv

#include "neighbors.h"

template<typename scalar_t>
int nanoflann_neighbors(vector<scalar_t>& queries, vector<scalar_t>& supports,
			vector<long>& neighbors_indices, float radius, int dim, int max_num){

	// Initiate variables
	// ******************

	// square radius

	const scalar_t search_radius = static_cast<scalar_t>(radius*radius);

	// indices
	int i0 = 0;

	// Counting vector
	int max_count = 1;
	float d2;

	// Nanoflann related variables
	// ***************************

	// CLoud variable
	PointCloud<scalar_t> pcd;
	pcd.set(supports, dim);
	//Cloud query
	PointCloud<scalar_t> pcd_query;
	pcd_query.set(queries, dim);

	// Tree parameters
	nanoflann::KDTreeSingleIndexAdaptorParams tree_params(10 /* max leaf */);

	// KDTree type definition
	typedef nanoflann::KDTreeSingleIndexAdaptor< nanoflann::L2_Adaptor<scalar_t, PointCloud<scalar_t> > , PointCloud<scalar_t>> my_kd_tree_t;

	// Pointer to trees
	my_kd_tree_t* index;
	index = new my_kd_tree_t(dim, pcd, tree_params);
	index->buildIndex();
	// Search neigbors indices
	// ***********************

	// Search params
	nanoflann::SearchParams search_params;
	search_params.sorted = true;
	std::vector< std::vector<std::pair<size_t, scalar_t> > > list_matches(pcd_query.pts.size());

	float eps = 0.00001;

	for (auto& p0 : pcd_query.pts){

		// Find neighbors
		scalar_t query_pt[dim];
		std::copy(p0.begin(), p0.end(), query_pt); 

		//for(int i=0; i < p0.size(); i++)
		//std::cout << query_pt[i] << '\n';

		list_matches[i0].reserve(max_count);
		std::vector<std::pair<size_t, scalar_t> > ret_matches;
		//nanoflann::RadiusResultSet<float,size_t> resultSet(r2, indices_dists);

		const size_t nMatches = index->radiusSearch(&query_pt[0], search_radius+eps, ret_matches, search_params);
		list_matches[i0] = ret_matches;
		if(max_count < nMatches) max_count = nMatches;
		i0++;


		// Get worst (furthest) point, without sorting:
		
		// cout << "\n neighbors: " << nMatches << "\n";

		// Get worst (furthest) point, without sorting:
		// for(int i=0; i < ret_matches.size(); i++)
		// std::cout << ret_matches.at(i) << '\n';

	}
	// Reserve the memory
	if(max_num > 0) {
		max_count = max_num;
	}
	
	int size = 0; // total number of edges
	for (auto& inds : list_matches){
		if(inds.size() <= max_count)
			size += inds.size();
		else
			size += max_count;
	}
	
	neighbors_indices.resize(size*2);
	int i1 = 0; // index of the query points
	int u = 0; // curent index of the neighbors_indices
	for (auto& inds : list_matches){
		for (int j = 0; j < max_count; j++){
			if(j < inds.size()){
				neighbors_indices[u] = inds[j].first;
				neighbors_indices[u + 1] = i1;
				u += 2;
			}
		}
		i1++;
	}

	return max_count;




}
template<typename scalar_t>
int batch_nanoflann_neighbors (vector<scalar_t>& queries,
                               vector<scalar_t>& supports,
                               vector<long>& q_batches,
                               vector<long>& s_batches,
                               vector<long>& neighbors_indices,
                               float radius, int dim, int max_num,
			       int mode){


// Initiate variables
// ******************
// indices
	int i0 = 0;

// Square radius
	float r2 = radius * radius;

	// Counting vector
	int max_count = 0;
	float d2;


	// batch index
	long b = 0;
	long sum_qb = 0;
	long sum_sb = 0;

	// Nanoflann related variables
	// ***************************

	// CLoud variable
	PointCloud<scalar_t> current_cloud;
	PointCloud<scalar_t> query_pcd;
	query_pcd.set(queries, dim);
	vector<vector<pair<size_t, scalar_t> > > all_inds_dists(query_pcd.pts.size());

	// Tree parameters
	nanoflann::KDTreeSingleIndexAdaptorParams tree_params(10 /* max leaf */);

	// KDTree type definition
	typedef nanoflann::KDTreeSingleIndexAdaptor< nanoflann::L2_Adaptor<scalar_t, PointCloud<scalar_t> > , PointCloud<scalar_t>> my_kd_tree_t;

// Pointer to trees
	my_kd_tree_t* index;
    // Build KDTree for the first batch element
	current_cloud.set_batch(supports, sum_sb, s_batches[b], dim);
	index = new my_kd_tree_t(dim, current_cloud, tree_params);
	index->buildIndex();
// Search neigbors indices
// ***********************
// Search params
	nanoflann::SearchParams search_params;
	search_params.sorted = true;

	for (auto& p0 : query_pcd.pts){
// Check if we changed batch

		scalar_t query_pt[dim];
		std::copy(p0.begin(), p0.end(), query_pt); 

		/*
		std::cout << "\n ========== \n";
		for(int i=0; i < dim; i++)
			std::cout << query_pt[i] << '\n';
		std::cout << "\n ========== \n";
		*/
	
		if (i0 == sum_qb + q_batches[b]){
			sum_qb += q_batches[b];
			sum_sb += s_batches[b];
			b++;

// Change the points
			current_cloud.pts.clear();
			current_cloud.set_batch(supports, sum_sb, s_batches[b], dim);
// Build KDTree of the current element of the batch
			delete index;
			index = new my_kd_tree_t(dim, current_cloud, tree_params);
			index->buildIndex();
		}
// Initial guess of neighbors size
		all_inds_dists[i0].reserve(max_count);
// Find neighbors
		size_t nMatches = index->radiusSearch(query_pt, r2, all_inds_dists[i0], search_params);
// Update max count

		std::vector<std::pair<size_t, float> > indices_dists;
		nanoflann::RadiusResultSet<float,size_t> resultSet(r2, indices_dists);

		index->findNeighbors(resultSet, query_pt, search_params);

		if (nMatches > max_count)
			max_count = nMatches;
// Increment query idx
		i0++;
	}
	// how many neighbors do we keep
	if(max_num > 0) {
		max_count = max_num;
	}
// Reserve the memory
	if(mode == 0){
		neighbors_indices.resize(query_pcd.pts.size() * max_count);
		i0 = 0;
		sum_sb = 0;
		sum_qb = 0;
		b = 0;

		for (auto& inds_dists : all_inds_dists){// Check if we changed batch

			if (i0 == sum_qb + q_batches[b]){
				sum_qb += q_batches[b];
				sum_sb += s_batches[b];
				b++;
			}

			for (int j = 0; j < max_count; j++){
				if (j < inds_dists.size())
					neighbors_indices[i0 * max_count + j] = inds_dists[j].first + sum_sb;
				else
					neighbors_indices[i0 * max_count + j] = supports.size();

			}

			i0++;
		}
		delete index;
	}
	else if(mode == 1){
		int size = 0; // total number of edges
		for (auto& inds_dists : all_inds_dists){
			if(inds_dists.size() <= max_count)
				size += inds_dists.size();
			else
				size += max_count;
		}
		neighbors_indices.resize(size * 2);
		i0 = 0;
		sum_sb = 0;
		sum_qb = 0;
		b = 0;
		int u = 0;
		for (auto& inds_dists : all_inds_dists){
			if (i0 == sum_qb + q_batches[b]){
				sum_qb += q_batches[b];
				sum_sb += s_batches[b];
				b++;
			}
			for (int j = 0; j < max_count; j++){
				if (j < inds_dists.size()){
					neighbors_indices[u] = inds_dists[j].first + sum_sb;
					neighbors_indices[u + 1] = i0;
					u += 2;
				}
			}
			i0++;
		}
	}
	return max_count;
}