graclus.py 1.69 KB
Newer Older
rusty1s's avatar
update  
rusty1s committed
1
from typing import Optional
rusty1s's avatar
rusty1s committed
2

rusty1s's avatar
update  
rusty1s committed
3
import torch
rusty1s's avatar
rusty1s committed
4
5


rusty1s's avatar
update  
rusty1s committed
6
7
8
9
@torch.jit.script
def graclus_cluster(row: torch.Tensor, col: torch.Tensor,
                    weight: Optional[torch.Tensor] = None,
                    num_nodes: Optional[int] = None) -> torch.Tensor:
rusty1s's avatar
rusty1s committed
10
    """A greedy clustering algorithm of picking an unmarked vertex and matching
rusty1s's avatar
typo  
rusty1s committed
11
    it with one its unmarked neighbors (that maximizes its edge weight).
rusty1s's avatar
rusty1s committed
12
13
14
15
16
17
18

    Args:
        row (LongTensor): Source nodes.
        col (LongTensor): Target nodes.
        weight (Tensor, optional): Edge weights. (default: :obj:`None`)
        num_nodes (int, optional): The number of nodes. (default: :obj:`None`)

rusty1s's avatar
docs  
rusty1s committed
19
20
    :rtype: :class:`LongTensor`

rusty1s's avatar
update  
rusty1s committed
21
22
23
24
    .. code-block:: python

        import torch
        from torch_cluster import graclus_cluster
rusty1s's avatar
rusty1s committed
25

rusty1s's avatar
update  
rusty1s committed
26
27
28
29
        row = torch.tensor([0, 1, 1, 2])
        col = torch.tensor([1, 0, 2, 1])
        weight = torch.Tensor([1, 1, 1, 1])
        cluster = graclus_cluster(row, col, weight)
rusty1s's avatar
rusty1s committed
30
    """
rusty1s's avatar
rusty1s committed
31

rusty1s's avatar
rusty1s committed
32
    if num_nodes is None:
rusty1s's avatar
update  
rusty1s committed
33
        num_nodes = max(int(row.max()), int(col.max())) + 1
rusty1s's avatar
rusty1s committed
34

rusty1s's avatar
rusty1s committed
35
36
37
38
39
    # Remove self-loops.
    mask = row == col
    row, col = row[mask], col[mask]

    if weight is not None:
rusty1s's avatar
rusty1s committed
40
41
42
43
44
        weight = weight[mask]

    # Randomly shuffle nodes.
    if weight is None:
        perm = torch.randperm(row.size(0), dtype=torch.long, device=row.device)
rusty1s's avatar
rusty1s committed
45
46
47
48
        row, col = row[perm], col[perm]

    # To CSR.
    perm = torch.argsort(row)
rusty1s's avatar
rusty1s committed
49
50
    row, col = row[perm], col[perm]

rusty1s's avatar
rusty1s committed
51
52
53
    if weight is not None:
        weight = weight[perm]

rusty1s's avatar
rusty1s committed
54
55
56
57
58
59
    deg = row.new_zeros(num_nodes)
    deg.scatter_add_(0, row, torch.ones_like(row))
    rowptr = row.new_zeros(num_nodes + 1)
    deg.cumsum(0, out=rowptr[1:])

    return torch.ops.torch_cluster.graclus(rowptr, col, weight)