fps_kernel.cu 7.01 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
#include <ATen/ATen.h>

rusty1s's avatar
rusty1s committed
3
#include "atomics.cuh"
rusty1s's avatar
rusty1s committed
4
5
6
7
#include "utils.cuh"

#define THREADS 1024

rusty1s's avatar
rusty1s committed
8
template <typename scalar_t, int64_t Dim> struct Dist {};
rusty1s's avatar
rusty1s committed
9

rusty1s's avatar
rusty1s committed
10
11
12
13
14
15
template <typename scalar_t> struct Dist<scalar_t, 1> {
  static __device__ void
  compute(ptrdiff_t idx, ptrdiff_t start_idx, ptrdiff_t end_idx, ptrdiff_t old,
          scalar_t *__restrict__ best, ptrdiff_t *__restrict__ best_idx,
          scalar_t *__restrict__ x, scalar_t *__restrict__ dist,
          scalar_t *__restrict__ tmp_dist, size_t dim) {
rusty1s's avatar
rusty1s committed
16

rusty1s's avatar
rusty1s committed
17
    for (ptrdiff_t n = start_idx + idx; n < end_idx; n += THREADS) {
rusty1s's avatar
typo  
rusty1s committed
18
19
      scalar_t d = x[old * 3 + 0] - x[n * 3 + 0];
      dist[n] = min(dist[n], d * d);
rusty1s's avatar
rusty1s committed
20
21
22
23
24
25
26
      if (dist[n] > *best) {
        *best = dist[n];
        *best_idx = n;
      }
    }
  }
};
rusty1s's avatar
rusty1s committed
27

rusty1s's avatar
rusty1s committed
28
29
30
31
32
33
template <typename scalar_t> struct Dist<scalar_t, 2> {
  static __device__ void
  compute(ptrdiff_t idx, ptrdiff_t start_idx, ptrdiff_t end_idx, ptrdiff_t old,
          scalar_t *__restrict__ best, ptrdiff_t *__restrict__ best_idx,
          scalar_t *__restrict__ x, scalar_t *__restrict__ dist,
          scalar_t *__restrict__ tmp_dist, size_t dim) {
rusty1s's avatar
rusty1s committed
34

rusty1s's avatar
rusty1s committed
35
36
37
38
39
40
41
42
43
44
    for (ptrdiff_t n = start_idx + idx; n < end_idx; n += THREADS) {
      scalar_t a = x[old * 3 + 0] - x[n * 3 + 0];
      scalar_t b = x[old * 3 + 1] - x[n * 3 + 1];
      scalar_t d = a * a + b * b;
      dist[n] = min(dist[n], d);
      if (dist[n] > *best) {
        *best = dist[n];
        *best_idx = n;
      }
    }
rusty1s's avatar
rusty1s committed
45
  }
rusty1s's avatar
rusty1s committed
46
};
rusty1s's avatar
rusty1s committed
47

rusty1s's avatar
rusty1s committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
template <typename scalar_t> struct Dist<scalar_t, 3> {
  static __device__ void
  compute(ptrdiff_t idx, ptrdiff_t start_idx, ptrdiff_t end_idx, ptrdiff_t old,
          scalar_t *__restrict__ best, ptrdiff_t *__restrict__ best_idx,
          scalar_t *__restrict__ x, scalar_t *__restrict__ dist,
          scalar_t *__restrict__ tmp_dist, size_t dim) {

    for (ptrdiff_t n = start_idx + idx; n < end_idx; n += THREADS) {
      scalar_t a = x[old * 3 + 0] - x[n * 3 + 0];
      scalar_t b = x[old * 3 + 1] - x[n * 3 + 1];
      scalar_t c = x[old * 3 + 2] - x[n * 3 + 2];
      scalar_t d = a * a + b * b + c * c;
      dist[n] = min(dist[n], d);
      if (dist[n] > *best) {
        *best = dist[n];
        *best_idx = n;
      }
    }
  }
};

template <typename scalar_t> struct Dist<scalar_t, -1> {
  static __device__ void
  compute(ptrdiff_t idx, ptrdiff_t start_idx, ptrdiff_t end_idx, ptrdiff_t old,
          scalar_t *__restrict__ best, ptrdiff_t *__restrict__ best_idx,
          scalar_t *__restrict__ x, scalar_t *__restrict__ dist,
          scalar_t *__restrict__ tmp_dist, size_t dim) {
rusty1s's avatar
rusty1s committed
75

rusty1s's avatar
rusty1s committed
76
    for (ptrdiff_t n = start_idx + idx; n < end_idx; n += THREADS) {
rusty1s's avatar
rusty1s committed
77
78
79
80
      tmp_dist[n] = 0;
    }

    __syncthreads();
rusty1s's avatar
rusty1s committed
81
    for (ptrdiff_t i = start_idx * dim + idx; i < end_idx * dim; i += THREADS) {
rusty1s's avatar
rusty1s committed
82
      scalar_t d = x[(old * dim) + (i % dim)] - x[i];
rusty1s's avatar
rusty1s committed
83
84
85
86
      atomicAdd(&tmp_dist[i / dim], d * d);
    }

    __syncthreads();
rusty1s's avatar
rusty1s committed
87
    for (ptrdiff_t n = start_idx + idx; n < end_idx; n += THREADS) {
rusty1s's avatar
rusty1s committed
88
      dist[n] = min(dist[n], tmp_dist[n]);
rusty1s's avatar
rusty1s committed
89
90
91
      if (dist[n] > *best) {
        *best = dist[n];
        *best_idx = n;
rusty1s's avatar
rusty1s committed
92
      }
rusty1s's avatar
rusty1s committed
93
    }
rusty1s's avatar
rusty1s committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
  }
};

template <typename scalar_t, int64_t Dim>
__global__ void
fps_kernel(scalar_t *__restrict__ x, int64_t *__restrict__ cum_deg,
           int64_t *__restrict__ cum_k, int64_t *__restrict__ start,
           scalar_t *__restrict__ dist, scalar_t *__restrict__ tmp_dist,
           int64_t *__restrict__ out, size_t dim) {

  const ptrdiff_t batch_idx = blockIdx.x;
  const ptrdiff_t idx = threadIdx.x;

  const ptrdiff_t start_idx = cum_deg[batch_idx];
  const ptrdiff_t end_idx = cum_deg[batch_idx + 1];

  __shared__ scalar_t best_dist[THREADS];
  __shared__ int64_t best_dist_idx[THREADS];

  if (idx == 0) {
    out[cum_k[batch_idx]] = start_idx + start[batch_idx];
  }

  for (ptrdiff_t m = cum_k[batch_idx] + 1; m < cum_k[batch_idx + 1]; m++) {
    scalar_t best = -1;
    ptrdiff_t best_idx = 0;

    Dist<scalar_t, Dim>::compute(idx, start_idx, end_idx, out[m - 1], &best,
                                 &best_idx, x, dist, tmp_dist, dim);
rusty1s's avatar
rusty1s committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

    best_dist[idx] = best;
    best_dist_idx[idx] = best_idx;

    for (int64_t u = 0; (1 << u) < THREADS; u++) {
      __syncthreads();
      if (idx < (THREADS >> (u + 1))) {
        int64_t idx_1 = (idx * 2) << u;
        int64_t idx_2 = (idx * 2 + 1) << u;
        if (best_dist[idx_1] < best_dist[idx_2]) {
          best_dist[idx_1] = best_dist[idx_2];
          best_dist_idx[idx_1] = best_dist_idx[idx_2];
        }
      }
    }

    __syncthreads();
rusty1s's avatar
rusty1s committed
140
141
142
    if (idx == 0) {
      out[m] = best_dist_idx[0];
    }
rusty1s's avatar
rusty1s committed
143
  }
rusty1s's avatar
rusty1s committed
144
145
}

rusty1s's avatar
rusty1s committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#define FPS_KERNEL(DIM, ...)                                                   \
  [&] {                                                                        \
    switch (DIM) {                                                             \
    case 1:                                                                    \
      fps_kernel<scalar_t, 1><<<batch_size, THREADS>>>(__VA_ARGS__, DIM);      \
      break;                                                                   \
    case 2:                                                                    \
      fps_kernel<scalar_t, 2><<<batch_size, THREADS>>>(__VA_ARGS__, DIM);      \
      break;                                                                   \
    case 3:                                                                    \
      fps_kernel<scalar_t, 3><<<batch_size, THREADS>>>(__VA_ARGS__, DIM);      \
      break;                                                                   \
    default:                                                                   \
      fps_kernel<scalar_t, -1><<<batch_size, THREADS>>>(__VA_ARGS__, DIM);     \
    }                                                                          \
  }()

rusty1s's avatar
rusty1s committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
at::Tensor fps_cuda(at::Tensor x, at::Tensor batch, float ratio, bool random) {
  auto batch_sizes = (int64_t *)malloc(sizeof(int64_t));
  cudaMemcpy(batch_sizes, batch[-1].data<int64_t>(), sizeof(int64_t),
             cudaMemcpyDeviceToHost);
  auto batch_size = batch_sizes[0] + 1;

  auto deg = degree(batch, batch_size);
  auto cum_deg = at::cat({at::zeros(1, deg.options()), deg.cumsum(0)}, 0);
  auto k = (deg.toType(at::kFloat) * ratio).round().toType(at::kLong);
  auto cum_k = at::cat({at::zeros(1, k.options()), k.cumsum(0)}, 0);

  at::Tensor start;
  if (random) {
    start = at::rand(batch_size, x.options());
    start = (start * deg.toType(at::kFloat)).toType(at::kLong);
  } else {
    start = at::zeros(batch_size, k.options());
  }

rusty1s's avatar
rusty1s committed
182
183
  auto dist = at::full(x.size(0), 1e38, x.options());
  auto tmp_dist = at::empty(x.size(0), x.options());
rusty1s's avatar
rusty1s committed
184
185
186
187
188
189
190

  auto k_sum = (int64_t *)malloc(sizeof(int64_t));
  cudaMemcpy(k_sum, cum_k[-1].data<int64_t>(), sizeof(int64_t),
             cudaMemcpyDeviceToHost);
  auto out = at::empty(k_sum[0], k.options());

  AT_DISPATCH_FLOATING_TYPES(x.type(), "fps_kernel", [&] {
rusty1s's avatar
rusty1s committed
191
192
193
194
    FPS_KERNEL(x.size(1), x.data<scalar_t>(), cum_deg.data<int64_t>(),
               cum_k.data<int64_t>(), start.data<int64_t>(),
               dist.data<scalar_t>(), tmp_dist.data<scalar_t>(),
               out.data<int64_t>());
rusty1s's avatar
rusty1s committed
195
196
  });

rusty1s's avatar
rusty1s committed
197
  return out;
rusty1s's avatar
rusty1s committed
198
}