README.md 2.4 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
[pypi-image]: https://badge.fury.io/py/torch-cluster.svg
[pypi-url]: https://pypi.python.org/pypi/torch-cluster
[build-image]: https://travis-ci.org/rusty1s/pytorch_cluster.svg?branch=master
[build-url]: https://travis-ci.org/rusty1s/pytorch_cluster
[coverage-image]: https://codecov.io/gh/rusty1s/pytorch_cluster/branch/master/graph/badge.svg
[coverage-url]: https://codecov.io/github/rusty1s/pytorch_cluster?branch=master

rusty1s's avatar
rusty1s committed
8
# PyTorch Cluster
rusty1s's avatar
rusty1s committed
9

rusty1s's avatar
rusty1s committed
10
11
12
13
[![PyPI Version][pypi-image]][pypi-url]
[![Build Status][build-image]][build-url]
[![Code Coverage][coverage-image]][coverage-url]

rusty1s's avatar
rusty1s committed
14
15
--------------------------------------------------------------------------------

rusty1s's avatar
rusty1s committed
16
This package consists of a small extension library of highly optimized graph cluster algorithms for the use in [PyTorch](http://pytorch.org/).
rusty1s's avatar
typo  
rusty1s committed
17
The package consists of the following clustering algorithms:
rusty1s's avatar
rusty1s committed
18

rusty1s's avatar
credit  
rusty1s committed
19
* **[Graclus](#graclus)** from Dhillon *et al.*: [Weighted Graph Cuts without Eigenvectors: A Multilevel Approach](http://www.cs.utexas.edu/users/inderjit/public_papers/multilevel_pami.pdf) (PAMI 2007)
rusty1s's avatar
rusty1s committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
* **[VoxelGrid](#voxelgrid)**

All included operations work on varying data types and are implemented both for CPU and GPU.

## Installation

Check that `nvcc` is accessible from terminal, e.g. `nvcc --version`.
If not, add cuda (`/usr/local/cuda/bin`) to your `$PATH`.
Then run:

```
pip install cffi torch-cluster
```

## Graclus

A greedy clustering algorithm of picking an unmarked vertex and matching it with one its unmarked neighbors (that maximizes its edge weight).
rusty1s's avatar
credit  
rusty1s committed
37
The GPU algorithm is adapted from Fagginger Auer and Bisseling: [A GPU Algorithm for Greedy Graph Matching](http://www.staff.science.uu.nl/~bisse101/Articles/match12.pdf) (LNCS 2012)
rusty1s's avatar
rusty1s committed
38
39
40
41
42

```python
import torch
from torch_cluster import graclus_cluster

rusty1s's avatar
rusty1s committed
43
44
45
row = torch.tensor([0, 1, 1, 2])
col = torch.tensor([1, 0, 2, 1])
weight = torch.tensor([1, 1, 1, 1])  # Optional edge weights.
rusty1s's avatar
rusty1s committed
46
47
48
49
50
51

cluster = graclus_cluster(row, col, weight)
```

```
print(cluster)
rusty1s's avatar
rusty1s committed
52
tensor([ 0,  0,  1])
rusty1s's avatar
rusty1s committed
53
54
```

rusty1s's avatar
rusty1s committed
55
56
57
## VoxelGrid

A clustering algorithm, which overlays a regular grid of user-defined size over a point cloud and clusters all points within a voxel.
rusty1s's avatar
rusty1s committed
58
59
60
61
62

```python
import torch
from torch_cluster import grid_cluster

rusty1s's avatar
rusty1s committed
63
64
pos = torch.tensor([[0, 0], [11, 9], [2, 8], [2, 2], [8, 3]])
size = torch.tensor([5, 5])
rusty1s's avatar
rusty1s committed
65
66
67
68
69
70

cluster = grid_cluster(pos, size)
```

```
print(cluster)
rusty1s's avatar
rusty1s committed
71
tensor([ 0,  5,  3,  0,  1])
rusty1s's avatar
rusty1s committed
72
```
rusty1s's avatar
rusty1s committed
73
74
75
76
77
78

## Running tests

```
python setup.py test
```