graclus.py 1.66 KB
Newer Older
quyuanhao123's avatar
quyuanhao123 committed
1
2
3
4
5
from typing import Optional

import torch


limm's avatar
limm committed
6
7
8
9
10
11
def graclus_cluster(
    row: torch.Tensor,
    col: torch.Tensor,
    weight: Optional[torch.Tensor] = None,
    num_nodes: Optional[int] = None,
) -> torch.Tensor:
quyuanhao123's avatar
quyuanhao123 committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
    """A greedy clustering algorithm of picking an unmarked vertex and matching
    it with one its unmarked neighbors (that maximizes its edge weight).

    Args:
        row (LongTensor): Source nodes.
        col (LongTensor): Target nodes.
        weight (Tensor, optional): Edge weights. (default: :obj:`None`)
        num_nodes (int, optional): The number of nodes. (default: :obj:`None`)

    :rtype: :class:`LongTensor`

    .. code-block:: python

        import torch
        from torch_cluster import graclus_cluster

        row = torch.tensor([0, 1, 1, 2])
        col = torch.tensor([1, 0, 2, 1])
        weight = torch.Tensor([1, 1, 1, 1])
        cluster = graclus_cluster(row, col, weight)
    """

    if num_nodes is None:
        num_nodes = max(int(row.max()), int(col.max())) + 1

    # Remove self-loops.
    mask = row != col
    row, col = row[mask], col[mask]

    if weight is not None:
        weight = weight[mask]

    # Randomly shuffle nodes.
    if weight is None:
        perm = torch.randperm(row.size(0), dtype=torch.long, device=row.device)
        row, col = row[perm], col[perm]

    # To CSR.
    perm = torch.argsort(row)
    row, col = row[perm], col[perm]

    if weight is not None:
        weight = weight[perm]

    deg = row.new_zeros(num_nodes)
    deg.scatter_add_(0, row, torch.ones_like(row))
    rowptr = row.new_zeros(num_nodes + 1)
    torch.cumsum(deg, 0, out=rowptr[1:])

    return torch.ops.torch_cluster.graclus(rowptr, col, weight)