radius_cpu.cpp 3.49 KB
Newer Older
quyuanhao123's avatar
quyuanhao123 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#include "radius_cpu.h"

#include "utils.h"
#include "utils/KDTreeVectorOfVectorsAdaptor.h"
#include "utils/nanoflann.hpp"

torch::Tensor radius_cpu(torch::Tensor x, torch::Tensor y,
                         torch::optional<torch::Tensor> ptr_x,
                         torch::optional<torch::Tensor> ptr_y, double r,
                         int64_t max_num_neighbors, int64_t num_workers) {

  CHECK_CPU(x);
  CHECK_INPUT(x.dim() == 2);
  CHECK_CPU(y);
  CHECK_INPUT(y.dim() == 2);

  if (ptr_x.has_value()) {
    CHECK_CPU(ptr_x.value());
    CHECK_INPUT(ptr_x.value().dim() == 1);
  }
  if (ptr_y.has_value()) {
    CHECK_CPU(ptr_y.value());
    CHECK_INPUT(ptr_y.value().dim() == 1);
  }

  std::vector<size_t> out_vec = std::vector<size_t>();

limm's avatar
limm committed
28
  AT_DISPATCH_ALL_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, x.scalar_type(), "radius_cpu", [&] {
quyuanhao123's avatar
quyuanhao123 committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    // See: nanoflann/examples/vector_of_vectors_example.cpp

    auto x_data = x.data_ptr<scalar_t>();
    auto y_data = y.data_ptr<scalar_t>();
    typedef std::vector<std::vector<scalar_t>> vec_t;
    nanoflann::SearchParams params;
    params.sorted = false;

    if (!ptr_x.has_value()) { // Single example.

      vec_t pts(x.size(0));
      for (int64_t i = 0; i < x.size(0); i++) {
        pts[i].resize(x.size(1));
        for (int64_t j = 0; j < x.size(1); j++) {
          pts[i][j] = x_data[i * x.size(1) + j];
        }
      }

      typedef KDTreeVectorOfVectorsAdaptor<vec_t, scalar_t> my_kd_tree_t;

      my_kd_tree_t mat_index(x.size(1), pts, 10);
      mat_index.index->buildIndex();

      for (int64_t i = 0; i < y.size(0); i++) {
        std::vector<std::pair<size_t, scalar_t>> ret_matches;
        size_t num_matches = mat_index.index->radiusSearch(
            y_data + i * y.size(1), r * r, ret_matches, params);

        for (size_t j = 0; j < std::min(num_matches, (size_t)max_num_neighbors);
             j++) {
          out_vec.push_back(ret_matches[j].first);
          out_vec.push_back(i);
        }
      }

    } else { // Batch-wise.

      auto ptr_x_data = ptr_x.value().data_ptr<int64_t>();
      auto ptr_y_data = ptr_y.value().data_ptr<int64_t>();

      for (int64_t b = 0; b < ptr_x.value().size(0) - 1; b++) {
        auto x_start = ptr_x_data[b], x_end = ptr_x_data[b + 1];
        auto y_start = ptr_y_data[b], y_end = ptr_y_data[b + 1];

        if (x_start == x_end || y_start == y_end)
          continue;

        vec_t pts(x_end - x_start);
        for (int64_t i = 0; i < x_end - x_start; i++) {
          pts[i].resize(x.size(1));
          for (int64_t j = 0; j < x.size(1); j++) {
            pts[i][j] = x_data[(i + x_start) * x.size(1) + j];
          }
        }

        typedef KDTreeVectorOfVectorsAdaptor<vec_t, scalar_t> my_kd_tree_t;

        my_kd_tree_t mat_index(x.size(1), pts, 10);
        mat_index.index->buildIndex();

        for (int64_t i = y_start; i < y_end; i++) {
          std::vector<std::pair<size_t, scalar_t>> ret_matches;
          size_t num_matches = mat_index.index->radiusSearch(
              y_data + i * y.size(1), r * r, ret_matches, params);

          for (size_t j = 0;
               j < std::min(num_matches, (size_t)max_num_neighbors); j++) {
            out_vec.push_back(x_start + ret_matches[j].first);
            out_vec.push_back(i);
          }
        }
      }
    }
  });

  const int64_t size = out_vec.size() / 2;
  auto out = torch::from_blob(out_vec.data(), {size, 2},
                              x.options().dtype(torch::kLong));
  return out.t().index_select(0, torch::tensor({1, 0}));
}