radius_cuda.cu 2.3 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#include "radius_cuda.h"

#include <ATen/cuda/CUDAContext.h>

#include "utils.cuh"

#define THREADS 1024

template <typename scalar_t>
__global__ void radius_kernel(const scalar_t *x, const scalar_t *y,
                              const int64_t *ptr_x, const int64_t *ptr_y,
                              int64_t *row, int64_t *col, scalar_t radius,
                              int64_t max_num_neighbors, int64_t dim) {

  const int64_t batch_idx = blockIdx.x;

rusty1s's avatar
rusty1s committed
17
18
  const int64_t x_start_idx = ptr_x[batch_idx];
  const int64_t x_end_idx = ptr_x[batch_idx + 1];
rusty1s's avatar
rusty1s committed
19

rusty1s's avatar
rusty1s committed
20
21
  const int64_t y_start_idx = ptr_y[batch_idx];
  const int64_t y_end_idx = ptr_y[batch_idx + 1];
rusty1s's avatar
rusty1s committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

  for (int64_t n_y = y_start_idx + threadIdx.x; n_y < y_end_idx;
       n_y += THREADS) {
    int64_t count = 0;
    for (int64_t n_x = x_start_idx; n_x < x_end_idx; n_x++) {
      scalar_t dist = 0;
      for (int64_t d = 0; d < dim; d++) {
        dist += (x[n_x * dim + d] - y[n_y * dim + d]) *
                (x[n_x * dim + d] - y[n_y * dim + d]);
      }
      dist = sqrt(dist);

      if (dist <= radius) {
        row[n_y * max_num_neighbors + count] = n_y;
        col[n_y * max_num_neighbors + count] = n_x;
        count++;
      }

      if (count >= max_num_neighbors) {
        break;
      }
    }
  }
}

torch::Tensor radius_cuda(torch::Tensor x, torch::Tensor y, torch::Tensor ptr_x,
                          torch::Tensor ptr_y, double r,
                          int64_t max_num_neighbors) {
  CHECK_CUDA(x);
  CHECK_CUDA(y);
  CHECK_CUDA(ptr_x);
  CHECK_CUDA(ptr_y);
  cudaSetDevice(x.get_device());

  x = x.view({x.size(0), -1}).contiguous();
  y = y.view({y.size(0), -1}).contiguous();

  auto row = torch::full(y.size(0) * max_num_neighbors, -1, ptr_y.options());
  auto col = torch::full(y.size(0) * max_num_neighbors, -1, ptr_y.options());

  auto stream = at::cuda::getCurrentCUDAStream();
  AT_DISPATCH_FLOATING_TYPES(x.scalar_type(), "radius_kernel", [&] {
    radius_kernel<scalar_t><<<ptr_x.size(0) - 1, THREADS, 0, stream>>>(
        x.data_ptr<scalar_t>(), y.data_ptr<scalar_t>(),
        ptr_x.data_ptr<int64_t>(), ptr_y.data_ptr<int64_t>(),
rusty1s's avatar
compile  
rusty1s committed
67
68
        row.data_ptr<int64_t>(), col.data_ptr<int64_t>(), r, max_num_neighbors,
        x.size(1));
rusty1s's avatar
rusty1s committed
69
70
71
72
73
  });

  auto mask = row != -1;
  return torch::stack({row.masked_select(mask), col.masked_select(mask)}, 0);
}