1. 19 Dec, 2025 1 commit
    • Lei Wang's avatar
      [ArgBinder] Enhance shape variable handling and assertions (#1467) · f6db2014
      Lei Wang authored
      * feat(arg_binder): enhance shape variable handling and assertions
      
      - Implemented special handling for comparing if_then_else expressions to simplify conditions involving NULL checks.
      - Added methods to set shared shape variables and finalize deferred bindings, generating cascading if_then_else expressions and runtime assertions for non-NULL buffers.
      - Updated the binding logic to defer shape variable bindings for shared variables, ensuring proper handling across multiple nullable buffers.
      
      * refactor(arg_binder): clean up shape variable handling and remove unused code
      
      - Removed deprecated methods for setting shared shape variables and finalizing deferred bindings, streamlining the argument binding process.
      - Simplified the logic for handling shape values in the `BindDLTensor` function, ensuring immediate binding for normal shape variables.
      - Enhanced clarity by eliminating unnecessary comments and code related to cascading if_then_else expressions for shared variables.
      
      * refactor(arg_binder): enhance DLTensor binding with improved shape handling
      
      - Replaced the single `BindDLTensor` method with `BindDLTensors` to support multiple buffers, improving flexibility in handling DLTensor bindings.
      - Introduced a two-pass approach for shape variable handling, allowing for better management of symbolic dimensions and null checks.
      - Updated the logic to assert non-null conditions at runtime and utilize cascaded if_then_else expressions for shape retrieval, enhancing robustness.
      - Removed deprecated code and streamlined the binding process for clarity and maintainability.
      
      * fix(test_nullable_buffer_params): improve formatting and consistency in test output
      
      - Updated string formatting for better readability in the `test_nullable_shared_shape` function.
      - Ensured consistent use of double quotes for string literals.
      - Added a missing newline at the end of the file for proper formatting.
      
      * refactor(arg_binder): simplify allocation size calculation in BindDLTensors
      
      - Streamlined the calculation of allocation size by replacing a lambda function with a direct loop, enhancing readability and maintainability.
      - Improved clarity in the null check message for data pointers, ensuring better understanding of the binding process.
      
      * Remove debug prints from phase.py
      
      Removed debug print statements after MakePackedAPI transformation.
      f6db2014
  2. 15 Dec, 2025 1 commit
    • Lei Wang's avatar
      [Enhancement] Improve buffer usage tracking in MakePackedAPI (#1435) · 0788feb8
      Lei Wang authored
      * Added detailed logging for data and shape variable parameters during buffer usage detection in the MakePackedAPI function.
      * Refactored the UsedBufferDetector to differentiate between used parameters by data and shape variables, enhancing clarity in buffer management.
      * Updated logic to ensure minimal carrier buffers are selected for shape symbols, improving the efficiency of parameter handling.
      0788feb8
  3. 28 Nov, 2025 1 commit
    • Lei Wang's avatar
      [Enhancement] Improve error handling and assertion messages across runtime and... · 17cfeb76
      Lei Wang authored
      [Enhancement] Improve error handling and assertion messages across runtime and argument binding (#1356)
      
      This commit enhances the error handling mechanisms in the runtime by introducing CPU-safe runtime helpers and refining assertion messages in the CodeGenCHost and ArgBinder. It includes structured packed error messages for various conditions, improving clarity in diagnostics. Additionally, the CMake configuration is updated to always include necessary runtime helpers, ensuring consistent error reporting. The changes aim to provide clearer feedback during runtime errors and improve the overall robustness of the argument binding process.
      17cfeb76
  4. 27 Nov, 2025 1 commit
    • Lei Wang's avatar
      [Refactor] Improve assertion handling in CodeGenCHost and ArgBinder (#1352) · 1e92d11c
      Lei Wang authored
      * [Refactor] Improve assertion handling in CodeGenCHost and ArgBinder
      
      This commit refines the assertion message generation in CodeGenCHost by optimizing the handling of equality checks and reducing buffer size for error messages. Additionally, it enhances the ArgBinder by introducing a nullable guard mechanism for assertions, allowing for more precise error handling when binding arguments. The changes improve the clarity and efficiency of assertion handling across the codebase.
      
      * [Enhancement] Update matmul kernel and optimize argument binding
      
      This commit enhances the matmul kernel by introducing additional tensor parameters and refining the pipeline stages for improved performance. It also updates the argument binding mechanism to include a flag indicating whether buffers are used, enhancing the efficiency of buffer management. Furthermore, the optimization phase in the engine is improved by adding a simplification step, ensuring better performance and clarity in the generated code.
      
      * lint fix
      
      * [Enhancement] Add tensor checks documentation and improve argument binding assertions
      
      This commit introduces a new documentation page for host-side tensor checks, detailing the automatic validations performed by TileLang on kernel arguments. It enhances the ArgBinder by adding assertions for non-null pointers when arguments are used, improving error handling. Additionally, the optimization phase in the engine is updated to include a simplification step, ensuring better performance and clarity in the generated code.
      
      * [Enhancement] Update .gitignore and refine matmul kernel for improved performance
      
      This commit adds host checks logs to the .gitignore file to prevent unnecessary log files from being tracked. Additionally, it refines the matmul kernel by adjusting pipeline stages, updating tensor parameters, and enhancing argument handling for better performance. The changes also include improved error messages in the argument binding process, ensuring clearer diagnostics for users.
      
      * lint fix
      
      * lint fix
      
      * [Refactor] Simplify tensor_null_test function and remove ptr_null_test
      
      This commit refactors the tensor_null_test function by adding a with_bias parameter and removing the ptr_null_test function, which was previously unused. The run_test function is updated to reflect these changes, streamlining the testing process for tensor operations.
      
      * lint fix
      
      * fix
      1e92d11c
  5. 18 Nov, 2025 1 commit
    • Lei Wang's avatar
      [FFI] Use tvm ffi as the default execution backend (#1259) · 74da3696
      Lei Wang authored
      * [Refactor] Update FFI type handling and simplify argument management
      
      * Refactored FFI type definitions in runtime and code generation files to use `TVMFFIAny` instead of `TVMValue`, enhancing type clarity.
      * Updated function registration in `runtime.cc` to utilize canonical names for better consistency.
      * Simplified argument handling in the `simplify` transformation, ensuring unused buffer parameters are removed only when simplification is enabled.
      * Adjusted autotuner and profiler parameters to standardize the execution backend to `tvm_ffi`, improving clarity in backend selection.
      * Removed obsolete `adapt_torch2tvm` function from tensor utilities to streamline the codebase and reduce complexity.
      
      * [Update] Sync TVM submodule and enhance kernel source handling
      
      * Updated the TVM submodule to commit cdc2aced, ensuring compatibility with recent changes.
      * Added functionality to print kernel source in `example_blocksparse_gemm.py` for better debugging.
      * Commented out the main execution call in test files to prevent unintended execution during testing.
      * Introduced `tilelang.disable_cache()` in various test files to streamline testing and avoid cache-related issues.
      * Refactored kernel source retrieval methods to improve clarity and consistency across different execution backends.
      
      * [Refactor] Clean up imports and improve code formatting
      
      * Removed unused import of `tilelang.testing` in `test_example_blocksparse_gemm.py` to streamline the code.
      * Reformatted several lines in `arg_binder.cc`, `make_packed_api.cc`, `tvm_ffi.py`, and `adapter.py` for improved readability and consistency.
      * Updated comments and spacing in `tvm_ffi.py` to enhance clarity without altering functionality.
      
      * Update execution backend options and improve resolution logic
      
      - Changed default execution backend from "cython" to "auto" in multiple locations to allow automatic selection based on the target.
      - Expanded the list of supported execution backends to include "torch" and "nvrtc" across various classes and functions.
      - Enhanced backend resolution logic in `KernelCache` and `AutoTuner` to ensure appropriate backend selection based on the target.
      - Updated documentation to reflect changes in execution backend options and their defaults.
      
      * lint fix
      
      * fix
      
      * Enhance argument handling in CUDA and HIP runtime modules
      
      - Updated `ExtractFuncInfo` in `rt_mod_cuda.cc` and `rt_mod_hip.cc` to map boolean argument types to int32, ensuring compatibility with device runtime.
      - Refactored `BindDLTensor` in `arg_binder.cc` to improve null handling and validation checks for DLTensor parameters, utilizing expression-level guards to prevent dereferencing null pointers.
      - Enhanced error checking for buffer shape, strides, and data fields, ensuring robust handling of optional inputs and maintaining consistency across various checks.
      
      * lint fix
      
      * lint fix
      
      * lint fix
      
      * lint fix
      
      * minor fix
      
      * fix
      
      * recover check
      
      * Refactor argument binding and validation in `arg_binder.cc`
      
      - Improved null handling and validation checks in `BindDLTensor`, ensuring safe dereferencing of pointers.
      - Enhanced consistency checks for buffer shape, strides, and data fields, utilizing expression-level guards.
      - Updated `MakePackedAPI` to maintain code clarity and consistency in argument handling.
      - Minor adjustments in test files to streamline kernel execution and improve readability.
      
      * lint fix
      
      * stride fix
      
      * minor fix
      
      * fix
      
      * lint fix
      
      * lint fix
      
      * Add CUDA stream access policy window helpers and integrate with L2 persistent cache management
      
      - Introduced functions to set and reset the CUDA stream access policy window, allowing for better control over L2 cache usage.
      - Updated runtime files to include new FFI packed functions for managing stream attributes.
      - Modified lower_hopper_intrin to incorporate prologue and epilogue statements for L2 cache setup and teardown.
      - Enhanced tests to verify the inclusion of new FFI calls in the generated kernel source.
      
      * check with symbolic
      
      * support null ptr
      
      * Update CMakeLists and lower.py for code generation and subproject status
      
      - Added `codegen_c_host.cc` to the list of source files in CMakeLists.txt for improved code generation support.
      - Updated the function call in `lower.py` to use `target.build.tilelang_c` for C target host code generation, enhancing compatibility.
      - Marked the TVM subproject as dirty to indicate local modifications.
      
      * lint fix
      
      * Update comments for clarity in quickstart.py
      74da3696
  6. 03 Nov, 2025 1 commit
  7. 31 Oct, 2025 1 commit
    • Lei Wang's avatar
      [FFI] Rebase tvm to v0.22.0 to utilize tvm-ffi (#1108) · 10911e28
      Lei Wang authored
      
      
      * 3rdparty tvm bump
      
      * bump tvm into v0.22.0
      
      * lint fix
      
      * rebase tvm
      
      * Update submodule tvm to latest commit 3085bc4
      
      * Refactor: Update configuration retrieval in CopyNode and adjust test registration in tilelang
      
      * test fix
      
      * add requirement
      
      * atomic_fix
      
      * atomic_fix
      
      * phaseout py39
      
      * optimize
      
      * optimize
      
      * lint fix
      
      * do not clean cache
      
      * do not clean cache
      
      * [Minor] Minor update for Python versions and dependencies
      
      * [Lint] fix lint for py39
      
      * [Lint] fix lint for ROCm
      
      * [Build][CI] Sync CI changes from upstream/sdist
      
      * [Lint] fix lint for ROCm
      
      * [Build][CI] Update `repair-wheel-command`
      
      * [Minor] update abi3audit result format
      
      * [Lint] fix lint for ROCm
      
      * [BugFix] fix build
      
      * [Lint] fix lint for ROCm
      
      * [BugFix] set rpath for libtvm and libtvm_runtime
      
      * [Deps] pin apache-tvm-ffi version
      
      * [Build] set Python 3.9 Limited API for Cython target
      
      * [Build] set Python 3.9 Limited API for Cython target
      
      * [Deps] Restore Python 3.8 support
      
      * [Build] use `apache-tvm-ffi`'s `libtvm_ffi`
      
      * [BugFix] use `;` as delimiter for RPATH on macOS
      
      * [BugFix] use `--ignore-missing-dependencies` for `delocate-wheel`
      
      * [Build] support `sccache` if available
      
      * [Build] add CIBW import test
      
      * [Build][CI] enable ccache for CIBW on Linux
      
      * [BugFix] set rpath for libtvm and libtvm_runtime
      
      * Revert "[Build][CI] enable ccache for CIBW on Linux"
      
      This reverts commit cd9ab57bb5ddd2572c60bcbbebde81480a658fd3.
      
      * [CI] fix perfbench bot
      
      * [BugFix] use Python 3.9 to build wheel
      
      * [Minor] update perfbench bot envs
      
      * [BugFix] fix CIBW environment on Linux
      
      * [CI] skip import test on CentOS 7
      
      * [CI] use Python urllib to download file instead of Wget
      
      ---------
      Co-authored-by: default avatarXuehai Pan <XuehaiPan@pku.edu.cn>
      10911e28
  8. 24 Oct, 2025 1 commit
  9. 22 Oct, 2025 1 commit
  10. 02 Sep, 2025 1 commit
    • Lei Wang's avatar
      [Lint] Introduce clang-tidy into format.sh (#777) · cdc5d8d3
      Lei Wang authored
      * [Refactor] Update Clang-Tidy Checks and Improve Code Consistency
      
      - Enhanced .clang-tidy configuration by adding specific checks for better bug detection and performance optimization.
      - Refactored function signatures across multiple files to use `const` references for parameters, improving performance and code clarity.
      - Updated various methods to ensure consistent handling of parameters, particularly in `AddPredicate`, `Substitute`, and `PlanLoopPartition` functions.
      - Improved readability by replacing size checks with `empty()` method calls in several locations, ensuring clearer intent in the code.
      - General code cleanup and adherence to best practices for better maintainability.
      
      * [Refactor] Enhance Code Consistency and Clang-Tidy Configuration
      
      - Updated .clang-tidy configuration to include additional checks for improved code quality and performance.
      - Refactored function signatures across multiple files to use `const` references, enhancing performance and clarity.
      - Replaced size checks with `empty()` method calls in various locations for clearer intent.
      - Improved handling of parameters in several functions, ensuring consistent usage of `std::move` where applicable.
      - General code cleanup to adhere to best practices and improve maintainability.
      
      * [Refactor] Integrate Clang-Tidy Checks and Enhance Code Consistency
      
      - Added clang-tidy checks to the format script for improved code quality assurance.
      - Refactored function signatures across multiple files to consistently use `const` references, enhancing performance and clarity.
      - Updated the requirements-lint.txt file to include clang-tidy as a dependency.
      - General code cleanup to adhere to best practices and improve maintainability.
      
      * [CI] Update AMD CI Workflow to Include Build Directory Creation
      
      - Added steps to create a build directory and configure CMake with ROCm support during the format check process.
      - Ensured cleanup of the build directory after the format check to maintain a clean workspace.
      
      * [Refactor] Remove Unused Member Variables in AtomicAddNode and CopyNode
      
      - Removed the `args_` member variable from both `AtomicAddNode` and `CopyNode` classes to streamline the code and eliminate unnecessary data members.
      - This change enhances code clarity and maintainability by focusing on relevant attributes for each class.
      
      * [Refactor] Update Clang-Tidy Integration and Code Improvements
      
      - Modified the format script to include the `-fix` option in the clang-tidy command for automatic code fixes.
      - Refactored the `AtomicAddVectorizePlanner` class to improve variable handling and consistency, including changes to member variable types and function signatures.
      - Enhanced code clarity by removing unnecessary `std::move` calls and ensuring consistent usage of types across the class.
      - General code cleanup to adhere to best practices and improve maintainability.
      
      * [Refactor] Improve Parameter Handling and Consistency in AtomicAddVectorize
      
      - Updated function signatures in `AtomicAddVectorizePlanResult` and `AtomicAddVectorizeRewriter` to use `const` references and `std::move` for better performance and clarity.
      - Enhanced the `UpdateVectorSize` method to accept `const Array<PrimExpr>&` for improved efficiency.
      - General code cleanup to maintain consistency and adhere to best practices.
      
      * [CI] Add Git Submodule Initialization to CI Workflow
      
      - Included a step to initialize and update git submodules recursively in the CI workflow.
      - This change ensures that all necessary submodules are available during the format check process, improving build reliability.
      
      * [CI] Add Git Submodule Update Step to Format Check
      
      - Included a command to initialize and update git submodules recursively in the CI workflow during the format check process.
      - This enhancement ensures that all required submodules are available, contributing to improved build reliability.
      
      * [Refactor] Update Function Signatures in AtomicAddVectorize
      
      - Modified the `VectorizeAtomicAdd` function signature to use `const` references for `thread_var` and `thread_bounds`, enhancing performance and code clarity.
      - This change aligns with previous refactoring efforts to improve parameter handling and consistency across the codebase.
      cdc5d8d3
  11. 30 Jul, 2025 1 commit
    • Siyuan Feng's avatar
      Refactor to support upstream tvm (#595) · a7c9a8b9
      Siyuan Feng authored
      
      
      **Summarize part of the rebase pr:**
      
      1. **Support T.thread_return() → CUDA return syntax**  
         Added support for translating `T.thread_return()` to CUDA's native `return` statement.
      
      2. **Dynamic type support for function inputs**  
         Functions now accept dynamically typed parameters using `typing`:
         ```python
         dyn_type = T.int32 or T.float
         @T.prim_func
         def main(
             a: dyn_type,
         )
         ```
      
      3. **Device Function Codegen**  
         Added support for generating `__device__` functions in CUDA:
         ```python
         @I.ir_module
         class Module:
             @T.prim_func(private=True)
             def add(a: T.int32, b: T.int32) -> T.int32:
                 return a + b
      
             @T.prim_func
             def main(
                 A: T.Buffer((128, 128), "int32"),
                 B: T.Buffer((128, 128), "int32"),
                 C: T.Buffer((128, 128), "int32"),
             ):
                 T.func_attr({"global_symbol": "main"})
                 length: T.int32 = Module.add(64, 64)  # Host call
                 for bx in T.thread_binding(length, "blockIdx.x"):
                     for tx in T.thread_binding(length, "threadIdx.x"):
                         C[bx, tx] = Module.add(A[bx, tx], B[bx, tx])  # Device call
         ```
         After compilation, `add` becomes a CUDA `__device__` function.
      
      4. **Cython-based Python/C++ interop**  
         Replaced ctypes with Cython for all Python/C++ interactions:
         - Python → C++ calls
         - C++ → Cython calls  
         This improves performance by around 100x and reduces CPU overhead during compile/runtime.
      
      5. **FP8 data type standardization**  
         Migrated `e5m2_float8` and similar types to Torch-standardized variants`float8_e5m2` and etc.
      
      
      
      * Refactor CMakeLists.txt to set default build type and manage dependencies for tvm_cython modules
      
      * Update default value of `check_well_formed` parameter in `prim_func` to False for improved flexibility in TIR function parsing.
      
      * Add StorageRewrite function to transform module
      
      Introduced the StorageRewrite function in the tilelang.transform module, which returns a TVM transform pass. This addition enhances the functionality of the module by providing a new transformation option for users.
      
      * Refactor null option handling in IR and layout inference
      
      - Updated instances of `NullOpt` to `std::nullopt` in `ir.cc` and `parallel.cc` for consistency with modern C++ practices.
      - Enhanced layout inference logic in `layout_inference.cc` to improve type safety by replacing `as<Fragment>().get()` with `as<FragmentNode>()`.
      - Adjusted error handling in `multi_version_buffer_rewriter.cc` and `persist_threadblock.cc` to use more concise null checks.
      - Cleaned up test files by commenting out `tilelang.testing.main()` and replacing it with specific test function calls for better clarity.
      - Removed unused test file `test_tilelang_kernel_deepseek_nsa.py` to streamline the testing suite.
      
      * Update TVM subproject and refactor cluster planning and tile operation handling
      
      - Updated the TVM subproject to a dirty commit state.
      - Refactored copyright headers in `cluster_planning.cc` to reflect the new licensing.
      - Enhanced error handling in `lower_tile_op.cc` to check for missing padding map annotations.
      - Modified test files to improve clarity and functionality, including adjustments to kernel compilation and test assertions.
      - Updated various test cases to ensure proper handling of annotations and configurations in the TileLang testing framework.
      
      * Update annotation type in warp specialized test for consistency
      
      - Changed the annotation type in the `test_warp_specialized` function from a literal integer to `T.int32(3)` for improved type safety and consistency with the TileLang framework.
      
      * Refactor test execution in warp specialized test
      
      - Replaced the direct call to `test_warp_specialized()` with `tilelang.testing.main()` in the test file to standardize test execution and improve integration with the TileLang testing framework.
      
      * refactor
      
      * [Enhancement] Add strict layout map for improved buffer layout inference (#594)
      
      - Introduced a `strict_layout_map` to enhance layout inference by ensuring that buffers with strict layout requirements are properly accounted for during the inference process.
      - Updated the inference logic to check for the presence of buffers in the `strict_layout_map` before applying layout changes, improving the accuracy of layout assignments.
      - Refactored the layout inference steps to include the copying of layouts into the new strict map, ensuring a clear separation of layout handling based on inference levels.
      
      * [Example] Update examples to use @tilelang.jit (#597)
      
      * [Example] Update kernel compilation in examples to use @tilelang.jit
      
      - Refactored multiple examples to eliminate the use of `tilelang.compile` for kernel creation, directly invoking the functions instead.
      - Added `@tilelang.jit` decorators with appropriate output indices to enhance performance and maintainability.
      - Improved code clarity by simplifying the kernel invocation process across various examples, ensuring consistency in how kernels are defined and executed.
      
      * format
      
      * Update example_tilelang_sparse_gqa_decode_varlen_indice.py
      
      * Update example_dequant_gemm_fine_grained.py
      
      * Update example_gemm_autotune.py
      
      ---------
      Co-authored-by: default avatarLei Wang <34334180+LeiWang1999@users.noreply.github.com>
      
      * [Enhancement] Refine error messaging in LowerBulkCopy for global and shared range checks (#599)
      
      * [Enhancement] Improve error messaging for global and shared range legality checks in LowerBulkCopy
      
      - Updated error messages in the LowerBulkCopy function to provide clearer context when global and shared ranges are illegal.
      - Enhanced the readability of the error output by including tensor names, improving debugging and validation processes during bulk copy operations.
      
      * [Enhancement] Refine error messaging in LowerBulkCopy for global and shared range checks
      
      - Improved the clarity of error messages in the LowerBulkCopy function by enhancing the output format.
      - Included additional context in error messages to aid debugging when global and shared ranges are found to be illegal, ensuring better traceability during bulk copy operations.
      
      * [Enhancement] Introduce PassConfig `TL_ENABLE_AGGRESSIVE_SHARED_MEMORY_MERGE` to enable aggressive shared memory reuse (#602)
      
      * [Enhancement] Add aggressive shared memory merge option in memory allocation
      
      - Introduced a new configuration option `tl.enable_aggressive_shared_memory_merge` to enable aggressive merging of shared memory allocations.
      - Updated the `SharedMemLinearAccessPatternFinder` class to support an aggressive merge strategy, allowing for improved memory reuse.
      - Modified the `MergeSharedMemoryAllocations` function to incorporate the new merging strategy based on the configuration.
      - Enhanced the `PassConfigKey` enumeration to include the new aggressive merge option, ensuring it can be configured appropriately.
      
      * lint fix
      
      * [Enhancement] Add aggressive shared memory merge configuration option
      
      - Introduced a new configuration option `kEnableAggressiveSharedMemoryMerge` to enable aggressive merging of shared memory allocations, enhancing memory management capabilities.
      
      * [Enhancement] Update MergeSharedMemoryAllocations to support aggressive merge option
      
      - Modified the `MergeSharedMemoryAllocations` function to accept an `enable_aggressive_merge` parameter, allowing for more flexible memory management.
      - Introduced a new helper function `should_enable_aggressive_merge` to determine the aggressive merge configuration based on the pass context and target.
      - Updated the relevant calls in the `phase.py` and `__init__.py` files to utilize the new aggressive merge functionality, enhancing the overall memory allocation strategy.
      
      * [Refactor] Update accumulation handling in gemm_sm90.h (#603)
      
      - Replaced the use of `tiled_mma.accumulate_ = GMMA::ScaleOut::Zero` with a call to `clear(acc)` for better clarity and maintainability in the accumulation logic.
      - This change enhances the readability of the code by standardizing the approach to clearing accumulation values across multiple sections of the file.
      
      * [Enhancement] Add tma bulk copy. (#600)
      
      * [Bugfix] Fixed mha_bwd shape inconsistency error (#604)
      
      * lint fix
      
      * Update requirements-lint.txt to maintain clang-format version consistency
      
      * [Bugfix] Avoid duplicate data access when cross thread buffer meet replicate register (#606)
      
      * [Enhancement] Improve debug output formatting in layout and fragment nodes
      
      - Updated the `DebugOutput` methods in `LayoutNode` and `FragmentNode` to provide more structured and informative output, including transformation details and thread range information.
      - Enhanced layout inference logic in `ParallelOp` to add predicates for cross-thread shared memory access, improving layout handling in parallel operations.
      - Minor adjustment in `layout_inference.cc` to ensure clarity in parallel loop handling.
      
      * lint fix
      
      * [Enhancement] Support tf32 gemm_rs (#607)
      
      - Added a line break in `quickstart.py` for better readability.
      - Simplified the JIT kernel compilation in `quickstart.py` by removing the unused execution backend option.
      - Modified `example_elementwise_add.py` to disable cache for `tilelang` and optimized the element-wise addition kernel by utilizing shared memory for input tensors, improving performance.
      - Updated default values for matrix dimensions and block sizes in the argument parser to enhance usability.
      
      * [Enhancement] Introduce option `TL_DISABLE_FAST_MATH` and `TL_ENABLE_PTXAS_VERBOSE_OUTPUT` (#609)
      
      * [Enhancement] Introduce new PassConfig options for fast math and PTXAS verbosity
      
      - Added `kDisableFastMath` and `kEnablePTXASVerboseOutput` configuration options to enhance control over compilation settings.
      - Updated `LibraryGenerator` to utilize these new pass configurations, allowing for more flexible compilation behavior based on user preferences.
      - Enhanced `PassConfigKey` enumeration to include the new options, ensuring they can be configured appropriately in the pass context.
      
      * [Refactor] Update PTXAS verbosity configuration key in LibraryGenerator
      
      - Changed the configuration key for PTXAS verbosity from `TL_VERBOSE_PTXAS_OUTPUT` to `TL_ENABLE_PTXAS_VERBOSE_OUTPUT` to align with the new naming convention introduced in recent enhancements.
      - This update ensures consistency in the configuration options used within the `LibraryGenerator` class, improving clarity and maintainability of the code.
      
      * lint fix
      
      * fix build
      
      * [Experimental][Language] add `T.GEMM_SP` for sm90 sparse tensor core (#526)
      
      * [experimental] add a draft gemm_sp
      
      * [3rdparty] bump cutlass to v3.9.3
      
      * [lint] run format.sh
      
      * [chore] rebase
      
      * [chore] use abs path
      
      * [gemm_sp] add metadata layout
      
      * [ci] add more example
      
      * [lint] run format.sh
      
      * [chore] polish
      
      * [chore] move gemm_sp to experimental
      
      * [chore] polish
      
      * [lint] run format.sh
      
      * [Enhancement] Improve bulk copy handling and update GEMM sparse tensor test
      
      * Added a warning log for unsupported non-swizzled global layouts in the bulk copy operation, ensuring fallback to normal copy.
      * Refactored the GEMM sparse tensor test by removing unnecessary imports and simplifying the kernel compilation process.
      * Updated the test to directly call the `run_gemm_sp` function, enhancing clarity and functionality.
      
      * Implement Test
      
      * [Enhancement] Update GEMM SP and SM89 templates for improved functionality
      
      * Refactored GEMM SP computation to enhance warp partitioning logic, ensuring compatibility with Hopper architecture.
      * Updated layout inference to support new WGMMA conditions and improved error messaging for unsupported targets.
      * Modified SM89 templates to utilize new MMA atom structures, enhancing performance and compatibility with fp8 types.
      * Added conditional inclusion for GEMM SP header based on CUDA architecture version.
      
      * lint fix
      
      * [gemm_sp] support more layout and data types
      
      * Enhancement: sync T.gemm_sp's layout inference with T.gemm
      
      * Enhancement: support more block_k in compress util
      
      * [Enhancement] enable block_k=64
      
      * [Lint] run format.sh
      
      * [Enhancement] compressor support more dtype
      
      * Enhancement: enable block_K=32
      
      * [Lint] format.sh
      
      * [Fixbug] fix shape
      
      * Refactor: sync gemm
      
      * [Enhancement] enable transpose
      
      * [Enhancement] enable fp8_e4m3
      
      * [Enhancement] enable int8
      
      * [Lint] run format.sh
      
      * [Benchmark] add gemm_sp benchmark
      
      * [Example] fix 256 threads hang
      
      * [CI] fix ci
      
      * [Chore] resolve gemini feedback
      
      * [Benchmark] increase search space
      
      * [Lint] format
      
      * [CI] skip sparse tensor core related tests as only sm90 is supported
      
      * [CI] pass local run
      
      * Update gemm_sm89.h
      
      * lint fix
      
      * lint fix
      
      * [Enhancement] Add support for sparse GEMM and initialize CUDA architecture flags
      
      - Introduced a new boolean flag `enable_sparse_gemm_` to control the inclusion of sparse GEMM functionality in CUDA code generation.
      - Updated the `Finish` method to conditionally include the sparse GEMM header based on the new flag.
      - Implemented logic in `VisitStmt_` to enable sparse GEMM when the corresponding external call is detected.
      - Added a function to initialize the `TORCH_CUDA_ARCH_LIST` environment variable based on the target compute version, enhancing compatibility with PyTorch.
      - Refactored the initialization function into the appropriate module and ensured it is called in the sparse utilities module.
      
      * Update test_compress_utils.py
      
      ---------
      Co-authored-by: default avatarLeiWang1999 <leiwang1999@outlook.com>
      Co-authored-by: default avatarLei Wang <34334180+LeiWang1999@users.noreply.github.com>
      
      * [Doc] Phaseout Legacy documentations (#610)
      
      - Added a new entry in the README for the introduction of `T.gemm_sp` supporting 2:4 sparse tensor core.
      - Removed several outdated documentation files related to convolution, flash attention, and other tutorials to streamline the documentation structure.
      
      * [Refactor] Phaseout Pass ParallelLoopTransformer (#611)
      
      * Refactor layout inference by removing the ParallelLoopTransformer class. Updated layout inference logic to streamline buffer access collection and condition handling in parallel loops. This change simplifies the code structure and enhances maintainability.
      
      * Update MHA backward test cases to use reduced dimensions for batch size and context length
      
      * fix build
      
      * [Enhancement] Update ReduceOp initialization values for integer types (#614)
      
      * [Enhancement] Update ReduceOp initialization values for integer types
      
      - Modified the `MakeInitValue` method in `ReduceOp` to handle integer data types correctly by returning appropriate minimum and maximum values based on the bit width.
      - Added checks for integer types to ensure correct initialization for `kMax` and `kMin` reduction types, enhancing the robustness of the reduction operations.
      
      * [Enhancement] Update ReduceOp to handle unsigned integer initialization values
      
      - Enhanced the `MakeInitValue` method in `ReduceOp` to include support for unsigned integer data types.
      - Added conditions to return appropriate initialization values for `kMax` and `kMin` reduction types based on the data type, improving the robustness of reduction operations.
      
      * Bump transformers from 4.50.0 to 4.51.0 in /examples/bitnet-1.58b (#615)
      
      Bumps [transformers](https://github.com/huggingface/transformers) from 4.50.0 to 4.51.0.
      - [Release notes](https://github.com/huggingface/transformers/releases)
      - [Commits](https://github.com/huggingface/transformers/compare/v4.50.0...v4.51.0
      
      )
      
      ---
      updated-dependencies:
      - dependency-name: transformers
        dependency-version: 4.51.0
        dependency-type: direct:production
      ...
      Signed-off-by: default avatardependabot[bot] <support@github.com>
      Co-authored-by: default avatardependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
      
      * [Refactor] refactor autotune examples (#617)
      
      * [Refactor] Update tilelang kernel functions and remove unused imports
      
      - Refactored the `flashattn_fwd`, `flashattn_bwd_preprocess`, and `flashattn_bwd_postprocess` functions to utilize direct kernel calls instead of cached versions, improving clarity and performance.
      - Added `@tilelang.jit` decorators with specified output indices to enhance kernel compilation.
      - Removed unused import of `cached` from `tilelang`, streamlining the code.
      - Commented out the main testing function call in `test_tilelang_kernel_mha_bwd.py` for potential future use.
      
      * [Refactor] Simplify configuration generation in benchmark and example scripts
      
      - Refactored the `get_configs` functions in multiple benchmark and example scripts to utilize a dictionary-based approach for parameter configuration, improving readability and maintainability.
      - Updated the `flashattn` and `chunk_scan_fwd` functions to directly accept configuration parameters, enhancing flexibility in kernel tuning.
      - Removed redundant code and streamlined the configuration generation process across various files, ensuring consistency in how configurations are defined and utilized.
      
      * [Refactor] Update configuration handling in benchmark scripts
      
      - Refactored the `get_configs` functions in benchmark scripts to accept a variable argument list, improving flexibility in configuration management.
      - Enhanced the `matmul` and `flashattn` functions to utilize the updated configuration approach, streamlining parameter handling for kernel tuning.
      - Added `@autotune` decorators to relevant functions, ensuring consistent autotuning behavior across benchmarks.
      - Cleaned up redundant code and improved overall readability in the affected files.
      
      * [Refactor] Clean up formatting and update subproject commit
      
      - Updated the subproject commit reference in the TVM directory to indicate a dirty state.
      - Removed unnecessary blank lines and improved formatting in the `benchmark_matmul` and `benchmark_matmul_fp8` scripts for better readability.
      - Streamlined the function definitions in the `flashattn` example script to enhance clarity and maintainability.
      
      * [Refactor] Update AutoTuner configuration handling
      
      - Modified the AutoTuner class to check if kernel parameters are set before processing tunable arguments, improving robustness in configuration handling.
      - Enhanced the logic for skipping compilation when tunable parameters are already provided, ensuring efficient use of resources.
      - Updated comments for clarity and maintainability.
      
      * lint fix
      
      * Update TVM subproject commit to indicate dirty state and modify MHA backward test cases
      
      - Updated the subproject commit reference in the TVM directory to reflect a dirty state.
      - Adjusted the `test_mha_bwd` function to use a new configuration for the MHA backward tests, changing the context size from 128 to 256.
      - Uncommented the main testing function call for potential execution.
      
      * lint fix
      
      * Bump transformers from 4.51.0 to 4.52.1 in /examples/bitnet-1.58b (#619)
      
      Bumps [transformers](https://github.com/huggingface/transformers) from 4.51.0 to 4.52.1.
      - [Release notes](https://github.com/huggingface/transformers/releases)
      - [Commits](https://github.com/huggingface/transformers/compare/v4.51.0...v4.52.1
      
      )
      
      ---
      updated-dependencies:
      - dependency-name: transformers
        dependency-version: 4.52.1
        dependency-type: direct:production
      ...
      Signed-off-by: default avatardependabot[bot] <support@github.com>
      Co-authored-by: default avatardependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
      
      * Fix PTXAS options flag in LibraryGenerator for consistency (#620)
      
      * Refactor FP8 type handling across multiple files to standardize usage of "float8_e4m3" and "float8_e5m2" instead of "e4m3_float8" and "e5m2_float8". This includes updates in benchmarks, examples, tests, and internal utilities.
      
      * [Refactor] Add parallel loop transform pass for condition extraction (#618)
      
      * [Refactor] Add parallel loop transform
      
      * done format check
      
      * pull 3rdparty repo
      
      * Refactor loop variable handling in transformation utilities
      
      - Updated the logic in `loop_parallel_transform_utils.h` to simplify the handling of related loop variables.
      - Removed the check that enforced a single related loop variable, replacing it with a return statement when multiple variables are detected, enhancing clarity and maintainability of the transformation process.
      
      * Update loop_parallel_transform_utils.h
      
      * Refactor loop variable handling in transformation utilities
      
      - Enhanced the logic in `loop_parallel_transform_utils.h` to improve clarity and maintainability by simplifying the handling of related loop variables.
      - Replaced the previous enforcement of a single related loop variable with a return statement for multiple variables detected.
      
      * remove disable cache flag as commit id has been key component
      
      * lint fix
      
      ---------
      Co-authored-by: default avatarLeiWang1999 <leiwang1999@outlook.com>
      Co-authored-by: default avatarLei Wang <34334180+LeiWang1999@users.noreply.github.com>
      
      * [Dev] Update linear attention examples to enhance performance on Hopper GPUs (#621)
      
      * Tune linear attention examples on H100
      
      * Add retnet fwd kernel
      
      * fix lint
      
      * [Enhancement] Add ahead of time cython compilation in setup.py (#622)
      
      * [Enhancement] Add Cython support and compiler detection in setup.py
      
      - Introduced a new `CythonExtension` class for building Cython-based extensions, enhancing the build process for Cython projects.
      - Implemented functions to detect the Cython compiler and C++ compiler, improving compatibility and user experience.
      - Updated the build process to handle Cython extensions alongside CMake extensions, ensuring a seamless integration for users.
      - Added caching mechanisms for Cython compilation to optimize build times and reduce unnecessary recompilation.
      
      * [Enhancement] Add Cython dependency and enable CMake extension building
      
      - Added Cython as a required dependency in `pyproject.toml` to support Cython-based extensions.
      - Updated `setup.py` to enable building CMake extensions, improving the build process for projects utilizing both Cython and CMake.
      - Modified the Cython compiler detection logic to streamline installation instructions for users.
      
      * [Enhancement] Support more flexible layout host pythonic expr (#623)
      
      * [Refactor] Enhance expression handling in utils.py and update wrapper to use pythonic_expr
      
      - Added support for additional TIR expressions (FloorDiv, Min, Max, Add, Sub, FloorMod) in the pythonic_expr function to improve string representation.
      - Replaced the deprecated legalize_c function calls in TLCUDASourceWrapper and TLCPUSourceWrapper with pythonic_expr for better expression handling in kernel launch code.
      
      * [Refactor] Simplify expression handling in pythonic_expr function
      
      - Consolidated binary and min/max operation handling in the pythonic_expr function to improve readability and maintainability.
      - Replaced individual checks for binary operations with a mapping approach, streamlining the code and enhancing performance in expression representation.
      
      * [Enhancement] Improve expression representation in pythonic_expr function
      
      - Added operator precedence handling to the pythonic_expr function, enhancing the conversion of TVM PrimExpr to Python-style strings.
      - Updated the visitor logic to intelligently add parentheses based on operator precedence, improving the accuracy of expression representation.
      - Included a docstring for better clarity on the function's purpose and usage.
      
      * test fix
      
      * [Enhancement] support composable expression for shape with symbolic vars (#624)
      
      * [Refactor] Enhance expression handling in utils.py and update wrapper to use pythonic_expr
      
      - Added support for additional TIR expressions (FloorDiv, Min, Max, Add, Sub, FloorMod) in the pythonic_expr function to improve string representation.
      - Replaced the deprecated legalize_c function calls in TLCUDASourceWrapper and TLCPUSourceWrapper with pythonic_expr for better expression handling in kernel launch code.
      
      * [Refactor] Simplify expression handling in pythonic_expr function
      
      - Consolidated binary and min/max operation handling in the pythonic_expr function to improve readability and maintainability.
      - Replaced individual checks for binary operations with a mapping approach, streamlining the code and enhancing performance in expression representation.
      
      * [Enhancement] Improve expression representation in pythonic_expr function
      
      - Added operator precedence handling to the pythonic_expr function, enhancing the conversion of TVM PrimExpr to Python-style strings.
      - Updated the visitor logic to intelligently add parentheses based on operator precedence, improving the accuracy of expression representation.
      - Included a docstring for better clarity on the function's purpose and usage.
      
      * test fix
      
      * minor update
      
      * 🐍
      
      Fix the file name "test_exmaple_tilelang_nsa" (#629)
      
      * [Enhancement] Add CPU utilization and count settings for Auto-Tuning (#630)
      
      * [Enhancement] Add CPU utilization and count settings for Auto-Tuning
      
      - Introduced environment variables for CPU utilization, counts, and maximum CPU count for auto-tuning.
      - Updated the AutoTuner class to utilize these new settings, improving flexibility and performance in multi-threaded environments.
      - Enhanced logging to provide better insights into the auto-tuning process based on the configured CPU settings.
      
      * typo fix
      
      * [AutoTune] Support `with set_autotune_inputs` to set auto tuning input tensors (#632)
      
      * [Refactor] Simplify and modularize autotuner implementation
      
      - Removed unused imports and extensive code sections from the autotuner module to enhance readability and maintainability.
      - Modularized the code by introducing new imports for autotuning and capturing functionalities, streamlining the overall structure.
      - Improved logging setup and removed redundant timeout handling functions, focusing on core autotuning logic.
      - Updated the AutoTuner class to better utilize the new modular structure, ensuring efficient performance during auto-tuning processes.
      
      * [Refactor] Clean up and enhance capture and tuner modules
      
      - Improved code readability by removing unnecessary blank lines and organizing imports in `capture.py` and `tuner.py`.
      - Enhanced logging in the `AutoTuner` class to provide clearer warnings regarding the usage of `supply_prog` in the context of auto-tuning.
      - Streamlined the `CaptureStack` class for better thread-local context management.
      
      * lint fix
      
      * [Refactor] Simplify configuration and autotuning logic in blocksparse GEMM example
      
      - Updated `get_configs` function to reduce the number of configurations, enhancing performance and clarity.
      - Removed the `get_best_config` function, integrating its logic directly into the `blocksparse_matmul` function with the `@autotune` decorator for streamlined autotuning.
      - Adjusted the main function to directly utilize the autotuned kernel, simplifying the overall structure and improving readability.
      - Deleted obsolete test file for autotuning decorator, cleaning up the codebase.
      
      * [Refactor] Improve code formatting and readability in autotune test file
      
      - Reformatted the `matmul` function and `get_configs` function for better readability by adjusting line breaks and indentation.
      - Fixed a typo in the `enable_rasteration` parameter name to ensure consistency.
      - Cleaned up unnecessary blank lines to enhance overall code clarity.
      
      * Update example_blocksparse_gemm.py
      
      * Update capture.py
      
      * [Pass] Introduce flag to diable cp async lowering (#633)
      
      * [Enhancement] Update PipelinePlanner to support async copy configuration
      
      - Modified the `Substitute` method in `PipelinePlanner` to accept a `use_async_copy` parameter, allowing for more flexible pipeline planning based on async copy requirements.
      - Updated the constructor of `PipelinePlanner` to initialize the `use_async_copy_` member variable.
      - Adjusted the logic in the pipeline planning process to conditionally apply async copy annotations based on the new parameter.
      - Commented out the `LoopVectorizeDynamic` call in `LowerAndLegalize` to prevent unintended modifications during the legalizing phase.
      
      * Refactor PipelinePlanning function for improved readability
      
      - Adjusted the formatting of the `use_async_copy` variable assignment in the `PipelinePlanning` function to enhance code clarity and maintainability.
      
      * fix typo (#635)
      
      * [Pass][Simplify] Introduce symbolic level simplify for condition expression (#634)
      
      * [Enhancement] Add argument simplification option to StmtSimplifier
      
      - Introduced a new `simplify_arguments` flag in the `StmtSimplifier::Apply` method to control argument simplification behavior.
      - Updated the `Simplify` function to accept the new flag, allowing for enhanced flexibility in the simplification process.
      - Adjusted the `LowerAndLegalize` and `_Simplify` functions to utilize the new argument, ensuring consistent behavior across the codebase.
      - Added comments to clarify the purpose of the new flag and its impact on simplification logic.
      
      * lint fix
      
      * [Enhancement] Improve layout inference and reduce operation handling
      
      - Updated `ParallelOp::InferLayout` to check for pure buffer stores, enhancing layout inference logic.
      - Modified `ReduceOp::Lower` to include all threads in the AllReduce operation, improving performance on specific architectures.
      - Added a TODO comment in `AllReduce` to consider merging synchronization barriers for optimization.
      
      * lint fix
      
      * [Enhancement] Add input validation for GEMM parameters
      
      - Introduced checks to ensure that the dimensions M and N are divisible by their respective warp sizes (kMPerWarp and kNPerWarp) in the Gemm::ComputeWarpPartition method.
      - Added informative error messages to assist in debugging when the input parameters do not meet the required conditions.
      
      * bug fix
      
      * Enhance test coverage by adding LLVM requirement decorator to multiple function call tests. This ensures that tests for argument count, type code, null data pointer, and dimensionality checks are only executed when LLVM is available, improving test reliability and clarity.
      
      * lint fix
      
      * Fix software pipeline stage annotation and update optional config handling in StmtSimplifier
      
      * Add Python executable detection in CMake configuration and update TVM submodule reference. Remove unused vectorization tests for improved clarity.
      
      * Update TVM submodule reference and refactor FFI registration to use static initialization blocks for improved organization and clarity.
      
      * Refactor attribute handling in layout and IR nodes to use reflection registration. This change replaces the VisitAttrs method with a RegisterReflection method for improved clarity and organization across multiple classes, including KernelLaunchFrameNode, WarpSpecializeFrameNode, LayoutNode, FragmentNode, and SwizzledLayoutNode.
      
      * finish rebase
      
      * tvm update
      
      * Refactor FFI registration across tilelang modules to use the updated `tvm.ffi` namespace. This includes changes in various files to replace `tvm._ffi` with `tvm.ffi`, enhancing consistency and clarity in the codebase.
      
      * lint fix
      
      * Update TVM submodule reference and modify CUDA runtime argument handling to use the new runtime constants for improved clarity and consistency.
      
      * lint fix
      
      * Refactor tensor data type references from "e4m3_float8" and "e5m2_float8" to "float8_e4m3" and "float8_e5m2" across multiple files for consistency and clarity.
      
      * lint fix
      
      * Refactor forward_index initialization in Fragment class to default to an empty array instead of None, ensuring consistent handling of optional outputs.
      
      * test fix
      
      * lint fix
      
      * bugfix
      
      * lint fix
      
      * reduce fix
      
      * lint fix
      
      * carver fix
      
      * cast fix
      
      * Update submodule and enhance kernel launch functionality with optional block size parameter; add device kernel launch transformation.
      
      * lint fix
      
      * bugfix
      
      * Refactor test execution in test_tilelang_cpu_gemm.py and enhance device call checks in lower.py to exclude C packed functions from kernel launch conditions.
      
      * lint fix
      
      * Update runtime.cc
      
      * phase out lisence
      
      * Update subproject commit for TVM to 555cc71
      
      * Update subproject commit for TVM to d39953fa
      
      * Update subproject commit for TVM to 9574805f
      
      * Update subproject commit for TVM to a08b7c3
      
      * fix ci
      
      * ci fix
      
      ---------
      Signed-off-by: default avatardependabot[bot] <support@github.com>
      Co-authored-by: default avatarLeiWang1999 <leiwang1999@outlook.com>
      Co-authored-by: default avatarLei Wang <34334180+LeiWang1999@users.noreply.github.com>
      Co-authored-by: default avatarCunxiao Ni <85601223+Cunxiao2002@users.noreply.github.com>
      Co-authored-by: default avatarYuxi Chi <cherichy@outlook.com>
      Co-authored-by: default avatarNathan Chen <120630832+Nathancgy@users.noreply.github.com>
      Co-authored-by: default avatarbotbw <wang1570@e.ntu.edu.sg>
      Co-authored-by: default avatardependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
      Co-authored-by: default avatarxs-keju <93414213+xs-keju@users.noreply.github.com>
      Co-authored-by: default avatarTong WU <109033598+Rachmanino@users.noreply.github.com>
      Co-authored-by: default avatarKadir Nar <kadir.nar@hotmail.com>
      Co-authored-by: default avatarYuqing Xia <35415939+xiayuqing0622@users.noreply.github.com>
      Co-authored-by: default avatarxwhzz <wh.xie@outlook.com>
      
      
      a7c9a8b9
  12. 13 Apr, 2025 1 commit
  13. 17 Jan, 2025 1 commit