- 20 Mar, 2025 1 commit
-
-
Lei Wang authored
* remove llvm build * [Refactor] Update kernel compilation and profiling in examples - Replaced `tilelang.lower` with `tilelang.compile` in multiple example scripts to streamline kernel compilation. - Updated profiling calls to utilize the new `get_profiler` method, enhancing performance measurement consistency. - Adjusted assertions and benchmarking methods to align with the new profiling structure across various examples, ensuring correctness and clarity in performance evaluations. * lint fix * License Update * [Refactor] Improve code formatting and documentation in CUDA header and HIP runtime files - Adjusted formatting in `cuda.h` for better readability, including alignment of comments and struct fields. - Cleaned up whitespace and improved comment clarity in `rt_mod_hip.cc` to enhance code maintainability. * [Refactor] Enhance formatting and clarity in CUDA header and HIP runtime files - Improved comment alignment and readability in `cuda.h`. - Cleaned up whitespace and formatting in `rt_mod_hip.cc` to enhance maintainability. * lint fix * lint fix * lint fix * lint fix * fix * License update * [Enhancement] Update JITKernel to use artifact for kernel source - Assigned the generated artifact to `self.artifact` for better management. - Updated kernel source references to use `artifact.kernel_source` for consistency in execution backend handling. * lint fix * Add @tilelang.testing.requires_llvm decorator to vectorization tests * Enhance setup.py and env.py for library management - Added functionality to remove original files after copying in CMakeBuild. - Updated TVM_LIBRARY_PATH in env.py to include the PyPI build library path for better integration. * Refactor TVM_LIBRARY_PATH assignment for improved readability in env.py * Refactor CMakeBuild file handling in setup.py - Added a check to ensure the target library directory exists before copying .so files. - Improved the logic for creating the target directory and copying files to enhance robustness. * bugfix * Rename BuildTLDebug to BuildTileLangCUDAWithoutCompile and update registration. Add @tilelang.testing.requires_llvm decorator to multiple tests for LLVM requirement. * lint fix * Enhance TileLang code generation by adding support for device code generation without compilation. Updated `host_codegen` and `device_codegen` functions to include new transformations and registration for `tilelang_hip_without_compile`. Refactored JIT kernel adapters to accommodate host and device modules, improving overall integration and flexibility. * lint fix * Add support for C target in device code generation - Updated `device_codegen_without_compile` to include handling for the C target by registering the `tilelang_cpp` function. * [Enhancement] Implement auto-clear cache feature based on environment variable * Added TILELANG_CLEAR_CACHE environment variable to control cache clearing. * Updated CI workflow to set TILELANG_CLEAR_CACHE during testing. * Modified cache initialization to clear cache if TILELANG_CLEAR_CACHE is set to true. * [Refactor] Update kernel invocation and import paths in tests and cache * Changed kernel invocation in `test_tilelang_kernel_dequantize_gemm.py` to return the result. * Updated import statements in `test_tilelang_kernel_int4_gemm_mma.py` to use `bitblas` instead of `tilelang`. * Refactored paths for artifact and parameters in `kernel_cache.py` for better maintainability. * [Refactor] Clean up whitespace and improve code formatting in kernel_cache.py * Removed unnecessary blank lines and adjusted spacing for better readability in the KernelCache class. * Enhanced overall code formatting to align with project standards. * [Enhancement] Add bfloat16 test case and improve kernel caching logic * Introduced a new test case for bfloat16 matrix multiplication in `test_tilelang_kernel_gemm_mma_intrinsic.py`. * Updated `KernelCache` to handle multiple kernel source files and improve error handling during saving and loading. * Refactored `JITKernel` to support instantiation from a database, enhancing flexibility in kernel management. * Adjusted `CtypesKernelAdapter` and `CythonKernelAdapter` to utilize the new kernel loading mechanism from the database. * Improved code formatting and readability across several files. * lint fix * Update bfloat16 matrix multiplication test case to use larger dimensions for improved coverage
-
- 19 Mar, 2025 1 commit
-
-
Yu Cheng authored
* [Enhancement] Add zero initialization option to GEMM operations - Introduced a new `zero_init` parameter to the GEMM function, allowing for optional zero initialization of the accumulator. - Updated the GEMM implementation across various CUDA architectures to support the new parameter. - Modified the Python interface for GEMM to include the `zero_init` argument, enhancing flexibility in kernel execution. - Ensured compatibility with existing functionality while improving initialization control for performance optimization. * rename zero_init to clear_accum * lint
-
- 17 Mar, 2025 1 commit
-
-
Lei Wang authored
* Refactor GEMM and Bulk Copy operations to enhance layout handling and support for Hopper architecture - Update `ComputeWarpPartition` to include a new parameter for Hopper WGMMA support. - Modify layout checks in `LowerBulkCopy` to accommodate new GEMM layout types. - Enhance layout inference logic in `InferLayout` for better compatibility with Hopper architecture. - Include necessary header files for built-in operations and layout inference improvements. * Refactor parameter formatting in CUDA matrix load functions for consistency - Adjusted parameter alignment in `ptx_ldmatrix_x1`, `ptx_ldmatrix_x2`, `ptx_ldmatrix_x4`, and their transposed counterparts for improved readability. - Added a blank line in `get_tensor_supply` function in `tensor.py` to enhance code clarity. * Enhance tensor supply generation in `get_tensor_supply` function - Introduced handling for unsigned integer and float8 tensor types, allowing for specific random tensor generation based on data type. - Updated logic to return appropriate random tensors for different data types, improving flexibility and functionality of tensor supply generation. - Refactored existing conditions for clarity and maintainability. * Fix tensor supply generation logic in `get_tensor_supply` function - Updated the variable reference from `tensor` to `param` to ensure correct handling of tensor data types. - Improved the accuracy of unsigned integer and float8 checks for tensor supply generation, enhancing functionality and reliability. * Enhance tensor supply checks in `get_tensor_supply` function - Updated the logic for identifying unsigned integers and float8 types by using `removeprefix` on the dtype string, improving accuracy in tensor supply generation. - Ensured better handling of tensor data types for more reliable random tensor generation based on the updated checks. * Enhance KernelParam functionality and improve tensor supply checks - Added methods `is_unsigned` and `is_float8` to the `KernelParam` class for better type identification of parameters. - Updated the `get_tensor_supply` function to utilize the new methods, improving clarity and accuracy in tensor supply generation based on parameter types.
-
- 16 Mar, 2025 1 commit
-
-
zqh-wz authored
* add test for issue 101 * use ss_smem_selector from cutlass * fix mismatch between smem layout and mma * only fix for sm90 * Add CUDA requirements to GEMM thread tests * lint fix --------- Co-authored-by:Lei Wang <34334180+LeiWang1999@users.noreply.github.com>
-
- 14 Mar, 2025 1 commit
-
-
Lei Wang authored
* Enhance error message for constant size stack allocation in CUDA codegen. Include the actual constant size and buffer variable name in the error output for better debugging. * Refactor GEMM and Bulk Copy operations to enhance layout handling and support for Hopper architecture - Update `ComputeWarpPartition` to include a new parameter for Hopper WGMMA support. - Modify layout checks in `LowerBulkCopy` to accommodate new GEMM layout types. - Enhance layout inference logic in `InferLayout` for better compatibility with Hopper architecture. - Include necessary header files for built-in operations and layout inference improvements. * lint fix * Remove unused builtin.h include directive * Update include path for builtin.h
-
- 13 Mar, 2025 1 commit
-
-
zqh-wz authored
* upgrade cutlass to upstream v3.8.0 * Implement fp8 gemm and add example script * Fix dtype retrieval with map_torch_type for fp8 inputs * Disable vectorization of fp8 values * Make MMA declaration compatible with cutlass 3.4.0+ * Add test for fp8 T.gemm * fix indent * fix indent * Add copyright and license header * Add copyright and license header * lint fix * Refactor matmul_nt and assert_matmul_correctness functions for improved readability by consolidating parameter definitions and adjusting formatting. * clang format lint --------- Co-authored-by:
Lei Wang <34334180+LeiWang1999@users.noreply.github.com> Co-authored-by:
LeiWang1999 <leiwang1999@outlook.com>
-
- 12 Mar, 2025 1 commit
-
-
Yu Cheng authored
- Introduce TMAStoreArrive and TMAStoreWait operations for CUDA TMA store synchronization - Add new builtin operations in op/builtin.cc and op/builtin.h - Implement TMAStoreSyncInjector to automatically inject TMA store synchronization calls - Update CUDA codegen to support new TMA store synchronization intrinsics - Add Python language bindings for new TMA store synchronization operations
-
- 11 Mar, 2025 1 commit
-
-
Yu Cheng authored
* [Dev][Bugfix] Add RMS Normalization Kernels and Fix Reduce Bug - Implement two RMS normalization implementations in TileLang: * `rms_norm_splitk`: Split-K reduction approach for large matrices * `rms_norm`: Full reduction kernel with simplified implementation - Add reference implementation using PyTorch for validation - Include performance benchmarking for both kernel variants - Demonstrate flexible block size and matrix size configurations * [Examples] Simplify RMS Normalization Kernel Compilation - Remove commented-out code for split-K RMS normalization - Simplify kernel compilation by removing explicit TMA lowering configuration - Update copyright header to Tile-AI Corporation - Streamline main script for RMS normalization example
-
- 05 Mar, 2025 2 commits
-
-
Lei Wang authored
* Fix debug print buffer template for unsigned char type - Update debug_print_buffer_value template specialization for unsigned char - Modify test_tilelang_debug_print.py to include additional dtype tests - Add test case for uint8 dtype in debug print buffer function * Refactor debug print buffer template formatting for unsigned char - Improve code formatting for debug_print_buffer_value template specialization - Adjust line breaks and indentation for better readability - Maintain consistent code style with other template specializations
-
Yu Cheng authored
[Dev] Adjust computation logic to avoid precision loss when casting acc_s from float to float16 (#141) - Remove redundant `acc_s_0` fragment in flash attention kernel - Simplify memory copy and reduction operations - Reorder memory copy and scaling steps for improved performance - Add Hopper-specific synchronization method in CUDA reduce template - Update reduce operation to use architecture-specific synchronization
-
- 04 Mar, 2025 1 commit
-
-
Lei Wang authored
* Change default log level from WARNING to INFO in TileLang initialization * Refactor Flash Attention Variable-Length MHA Example with Cython Backend Support - Update `example_mha_fwd_varlen.py` to use Cython backend for kernel compilation - Remove unused imports and simplify function signature - Modify `flashattn` function to handle max sequence length as a separate argument - Update kernel call to include max sequence length parameter - Improve code readability and remove commented-out code - Add print statement to confirm successful assertion * Refactor code formatting in TileLang lowering and example files - Improve line breaks and code formatting in `lower.py`, `wrapper.py`, and `tensor.py` - Simplify line breaks and reduce unnecessary whitespace - Enhance code readability by adjusting indentation and line breaks - Update example MHA forward pass script with cleaner tensor initialization * Update TileLang kernel test with import path changes for MMA layout and macro generator - Modify import statements in test_tilelang_kernel_dequantize_gemm.py - Replace bitblas imports with tilelang.intrinsics imports for MMA-related utilities - Update main function to use tilelang.testing.main() * Add Block Sparse Attention Examples for TileLang and Triton - Implement block sparse attention kernels for both TileLang and Triton - Add utility functions for generating sparse attention masks using top-k and threshold methods - Support causal and variable-length attention scenarios - Include test cases for different sequence length configurations - Demonstrate block-level sparse attention with configurable parameters * Refactor Block Sparse Attention Examples with Code Style Improvements - Improve code formatting in block_sparse_attn_tilelang.py and block_sparse_attn_triton.py - Enhance readability by adjusting line breaks and indentation - Simplify kernel and function calls with better formatting - Add whitespace and line break improvements for better code clarity * Enhance Layout Plotting with Multi-Replication and Dynamic Visualization - Update plot_layout function to support multiple replications in thread and value mapping - Improve thread and value mapping to handle replicated layouts - Dynamically adjust figure size and legend positioning - Add print statements for saved plot file paths - Modify example fragment_mma_load_a.py to uncomment and enable warp and block layout plotting * Refactor AtomicAdd functions in CUDA common header - Implement a generic template for AtomicAdd function - Specialize templates for half_t, bfloat16_t, and pointer types - Reorganize and clean up existing AtomicAdd implementations - Improve type handling and conversion in atomic operations * Remove unused import in MHA backward test file - Remove unnecessary argparse import from test_tilelang_kenrel_mha_bwd.py - Add blank line for improved code formatting - Minor code cleanup in test file
-
- 27 Feb, 2025 1 commit
-
-
Lei Wang authored
* refactor code * enhance tutorial * Enhance error handling and code generation in CUDA and TileLang components This commit introduces several improvements across multiple files: - Added more informative error messages in GEMM layout checks - Updated CUDA codegen to support more flexible function signature generation - Improved TMA descriptor initialization and kernel dispatch logic - Refined library generation and source code parsing utilities - Enhanced error handling in various adapter and wrapper classes * Add thread tag validation for warp specialization Introduce a ThreadTagChecker to validate that a PrimFunc only uses threadIdx.x before applying warp specialization. This prevents unintended transformations on kernels with complex thread binding and provides a clear warning to users about potential issues with warp specialization. * Update TileLang Profiling and Compilation in Flash Decoding Examples Refactor the profiling and compilation workflow in two flash decoding example scripts: - Replace `tilelang.lower()` and `tilelang.Profiler()` with `tilelang.compile()` - Simplify profiler initialization using `get_profiler()` - Update method calls to use the new profiler and compiled kernel objects - Maintain existing performance benchmarking and validation logic * Refactor and clean up code formatting in TileLang testing and adapter modules This commit includes several code style and formatting improvements: - Adjust whitespace and line breaks in test files - Improve code formatting in CUDA source wrapper and adapter utilities - Enhance readability of function calls and argument handling - Remove unnecessary whitespace and standardize indentation - Simplify function signatures and argument parsing * Refactor CUDA codegen and improve code formatting This commit includes several improvements to CUDA code generation and formatting: - Enhance function signature generation in CodeGenTileLangCUDA - Improve code formatting and readability in CUDA-related files - Simplify parameter handling and type annotations - Clean up whitespace and line breaks in codegen and layout files --------- Co-authored-by:Ubuntu <dlisuser@h100testl730RPS.xu5snccwrbtejcqqalluoku5hb.xx.internal.cloudapp.net>
-
- 24 Feb, 2025 1 commit
-
-
Lei Wang authored
* Add DeepSeek MLA decode example with Flash Attention implementation * Add GEMM SplitK and StreamK example implementations This commit introduces two new example scripts demonstrating advanced GEMM (matrix multiplication) techniques: - `example_tilelang_gemm_splitk.py`: Implements a Split-K GEMM kernel using TileLang - `example_tilelang_gemm_streamk.py`: Implements a Stream-K GEMM kernel using TileLang Both examples showcase different parallel computation strategies for matrix multiplication, with comprehensive testing using PyTorch reference implementations. * Refactor GEMM SplitK and StreamK example implementations Clean up and improve code formatting for the SplitK and StreamK GEMM example scripts: - Remove unused import (Profiler) in splitk example - Simplify line breaks and improve code readability - Standardize indentation and remove unnecessary whitespace - Optimize atomic add and copy operations for better clarity * Add block sparse attention benchmarks for multiple libraries This commit introduces comprehensive block sparse attention benchmarks for different libraries: - TileLang block sparse FMHA implementation - Triton block sparse FMHA implementation - PyTorch reference block sparse FMHA implementation - FlashAttention dense FMHA reference implementation The benchmarks include: - Configurable benchmark parameters (batch size, heads, sequence length, etc.) - Sparse mask generation using top-k and threshold methods - Performance measurement for different sparse attention configurations - Utility functions for mask generation and benchmarking * Refactor block sparse attention benchmarks with code style improvements - Add Ruff linter ignore comments to benchmark files - Improve code formatting and line breaks - Remove unused imports - Standardize print statement formatting - Enhance code readability across multiple library benchmarks * lint fix * Add CUDA atomic operations for BFLOAT16 and update function naming - Implement AtomicAdd functions for BFLOAT16 and BFLOAT16x2 in CUDA common header - Rename existing atomic add functions to use PascalCase (atomicAdd -> AtomicAdd) - Add a new __pack_nv_bfloat162 function for packing BFLOAT16 values - Update kernel and language customization to use new function names - Add return type annotations in profiler module * lint fix
-
- 22 Feb, 2025 1 commit
-
-
Lei Wang authored
* Remove Torch CPP backend and update execution backend options - Remove TorchCPPKernelAdapter and related code from JIT modules - Update execution backend options in jit/__init__.py, kernel.py, and adapter/__init__.py - Remove "torch_cpp" from supported execution backend literals - Simplify backend validation and remove unused torch_cpp-related code 。 * lint fix * Add block sparse attention implementations for TileLang and Triton - Implement block sparse attention kernels for TileLang and Triton - Add example scripts for block sparse attention with top-k and threshold-based masking - Include utility functions for generating sparse attention masks - Demonstrate causal attention with block-level sparsity - Add test cases to validate sparse attention implementations against PyTorch reference
-
- 09 Feb, 2025 1 commit
-
-
Lei Wang authored
* [Enhancement] Add VectorizeLoop function and update imports for compatibility * [CI][Test] Improve test cases for vectorization and fix typos in parser comments * lint fix * Fix incorrect module reference for VectorizeLoop transformation * Refactor vectorize_loop transformation by removing unused extent mutation logic * [Enhancement] Add support for FP8 data types and global barriers in CUDA codegen * Fix formatting in CUDA FP8 header file for consistency * Refactor CI workflow to use 'tilelang_ci' virtual environment and update CUDA type printing for better clarity * Update submodule 'tvm' to latest commit for improved functionality * Refactor execution backend references from 'dl_pack' to 'dlpack' for consistency and clarity; add apply_simplify function to simplify PrimFunc or IRModule. * Refactor CUDA code for improved readability; clean up formatting and remove unnecessary whitespace in multiple files. * Refactor import statement in test_tilelang_kernel_dequantize_gemm.py to use 'tilelang.language' for consistency * Add CUDA requirements to FP8 test cases and update references for clarity * Add a blank line for improved readability in test_tilelang_kernel_fp8_gemm_mma.py * Fix data type in reference result calculation for consistency in test_tilelang_kernel_gemm_mma_intrinsic.py * Add CUDA requirements and FP8 test cases for matmul and gemv simulations * Remove debug print statements and use tilelang's testing assertion for result validation in test_tilelang_kernel_gemm_mma_intrinsic.py * Remove outdated comment regarding FP8 tests in test_tilelang_kernel_gemv_simt.py * Add BF16 support to matrix multiplication and introduce corresponding test cases * Add a blank line for improved readability in BF16 GEMM test * Update acknowledgements in README to include supervision by Zhi Yang at Peking University * enhance acknowledgement * Replace tutorial on memory layout optimization with new tutorial on writing high-performance kernels with thread primitives * Update subproject commit for TVM dependency * Update subproject commit for TVM dependency * Add int4_t type and functions for packing char values in CUDA common header * Add plot_layout example and implement GetForwardVars method in layout classes * Refactor code for improved readability by adjusting line breaks and formatting in layout and test files * Fix formatting by removing unnecessary line break in layout.h * Refactor make_int4 function for improved readability by adjusting parameter formatting
-
- 06 Feb, 2025 1 commit
-
-
Lei Wang authored
* [Enhancement] Add VectorizeLoop function and update imports for compatibility * [CI][Test] Improve test cases for vectorization and fix typos in parser comments * lint fix * Fix incorrect module reference for VectorizeLoop transformation * Refactor vectorize_loop transformation by removing unused extent mutation logic * [Enhancement] Add support for FP8 data types and global barriers in CUDA codegen * Fix formatting in CUDA FP8 header file for consistency * Refactor CI workflow to use 'tilelang_ci' virtual environment and update CUDA type printing for better clarity * Update submodule 'tvm' to latest commit for improved functionality * Refactor execution backend references from 'dl_pack' to 'dlpack' for consistency and clarity; add apply_simplify function to simplify PrimFunc or IRModule. * Refactor CUDA code for improved readability; clean up formatting and remove unnecessary whitespace in multiple files. * Refactor import statement in test_tilelang_kernel_dequantize_gemm.py to use 'tilelang.language' for consistency * Add CUDA requirements to FP8 test cases and update references for clarity * Add a blank line for improved readability in test_tilelang_kernel_fp8_gemm_mma.py * Fix data type in reference result calculation for consistency in test_tilelang_kernel_gemm_mma_intrinsic.py * Add CUDA requirements and FP8 test cases for matmul and gemv simulations * Remove debug print statements and use tilelang's testing assertion for result validation in test_tilelang_kernel_gemm_mma_intrinsic.py * Remove outdated comment regarding FP8 tests in test_tilelang_kernel_gemv_simt.py
-
- 24 Jan, 2025 1 commit
-
-
Lei Wang authored
* [Doc] Update documentation structure and content: add overview section, revise project name, and change theme to Furo * [Feature] Add device-side debug printing functions and integrate into kernel interface * lint fix * remove debug print * implement test for debug * lint fix * add some comments * Enhance fragment design and assert fragment print * enhance debug print * add test for msg * lint fix
-
- 11 Jan, 2025 2 commits
-
-
Lei Wang authored
* README.md fixed * update test ci * Lint and Typo Fix * Clang Format Lint Fix
-
Lei Wang authored
* Add format.sh script for code formatting and linting * docs update * center align the title * lint fix * add ignore * Add .gitignore for 3rdparty directory * Add requirements-dev.txt, requirements-test.txt, and requirements.txt * 3rdparty * Add gemm.h, CMakeLists.txt, _ffi_api.py, __init__.py, runtime.h, reduce.h, loop_partition.h, utils.h, and loop_vectorize.h * Refactor CMakeLists.txt and include statements - Update CMakeLists.txt to use a newer version of CMake and add project name - Remove unnecessary include directories Fix include paths in layout.cc, codegen.cc, codegen.h, rt_mod.cc, frontend_legalize.cc, inject_pipeline.cc, layout_inference.cc, loop_vectorize.cc, and lower_tile_op.cc - Update include paths to use relative paths instead of absolute paths * Update submodule for 3rdparty/tvm * update * load dll first * Refactor CMakeLists.txt and include statements * Refactor CMakeLists.txt and include statements * git keep update * Refactor CMakeLists.txt and include statements * Refactor CMakeLists.txt and include statements * refactor code structure * Update Readme * CMakeLists Customized * update readme * update README * update readme * update usage * with TVM_IMPORT_PYTHON_PATH to handle own tvm build python import * annotate lower transform global func with `transform` prefix * Migrate Simplify Pass from tilelang tvm branch * enhance system environment handling with __init__ and CMake * Initial commit * CODE_OF_CONDUCT.md committed * LICENSE committed * README.md committed * SECURITY.md committed * SUPPORT.md committed * CODE_OF_CONDUCT Commit * LICENSE Commit * SECURITY Commit * SUPPORT Commit * Modify Support * Update README.md * security ci update * remove examples * Update and implement clang-format * add composable kernel components * Migrate from latest update * submodule update * Test update * Update License * Spell check * lint fix * add clang-tidy to apply static analysis for c source * update tilelang examples * Update Install Docs * Refactor filetree * Enhance Install * conflict resloved * annotate_version * Initial Update * test fix * install * Implement setup.py * lint fix * Separate Init * Separate test * docker file commit * add logo * Update Readme and Examples * update readme * update logo * Implement AMD Installation * Add License * Update AMD MI300x Benchmark * update README * update mi300 benchmark scripts * update ignore * enhance build scirpt * update image * enhance setup.py to remove duplicated libraries * remove debug files * update readme * update image * update gemm examples * update flashattention README * readme update * add cmake into requirements * libinfo fix * auto update submodule * lint fix * Fix AMD Build and Test * Update check for transpose attribute for CDNA Arch * typo fix for amd * Implement Matmul Benchmark * Refactor Code * [TypoFix] Fix GEMM Example * [Docs] Init Linear Attention README * [TYPO] Typo fix * [Lint] Lint Fix * enhance example with intrinsics * [Enhancement] Improve Buffer Collection during IR Parser * [Dev] Introduce Current classmethod to get current frame * submodule update * fake test pass update * support thread_extent_api * code optimize * Add GEMM function implementation for matrix multiplication * Update logging format to reflect TileLang in logger messages * Refactor CMakeLists.txt for improved readability and set default build type to Release * Support Gemm SS Primitives Implementation * [README] Upload Tile Language Logo (#5) * update logo * Update README.md to enhance formatting and center the title --------- Co-authored-by:
microsoft-github-operations[bot] <55726097+microsoft-github-operations[bot]@users.noreply.github.com> Co-authored-by:
Microsoft Open Source <microsoftopensource@users.noreply.github.com> Co-authored-by:
Yu Cheng <yu.cheng@pku.edu.cn>
-