- 15 Dec, 2025 1 commit
-
-
Lei Wang authored
* Introduced a new function, IsExprInvariantInVectorBoundary, to encapsulate the logic for checking if an expression is invariant within vector boundaries, improving code clarity and reusability. * Updated the existing vectorization logic to utilize this new function, streamlining the process of determining vectorization feasibility based on boundary conditions. * Enhanced comments for better understanding of the vectorization criteria and mathematical rationale behind the checks.
-
- 12 Dec, 2025 1 commit
-
-
Xiangwen Wang authored
* Improve loop vectorize * Improve loop vectorize * Improve loop vectorize * Improve loop vectorize * Improve loop vectorize * Add some vectorize tests and comments
-
- 11 Dec, 2025 1 commit
-
-
Lei Wang authored
* [Dependency] Update apache-tvm-ffi version to >=0.1.2 in project files * [Dependency] Update subproject commit for TVM to latest version afc07935 * [Enhancement] Add support for optional step parameter in loop constructs - Updated loop creation functions to accept an optional step parameter, enhancing flexibility in loop definitions. - Modified ForFrame implementations to utilize the new step parameter across various loop types including serial, parallel, and pipelined loops. - Adjusted related vectorization transformations to accommodate the step parameter, ensuring consistent behavior in loop vectorization processes. * lint fix
-
- 23 Nov, 2025 1 commit
-
-
Lei Wang authored
* [Refactor] Update Vectorization Functions to Accept Analyzer Parameter - Modified `VectorizeLoop` and related functions to accept an `arith::Analyzer` parameter, enhancing their capability to perform analysis during vectorization. - Updated multiple instances in `copy.cc`, `fill.cc`, `parallel.cc`, and layout inference files to utilize the new analyzer parameter for improved performance and correctness. - Ensured consistency across vectorization logic by integrating the analyzer into existing workflows, facilitating better optimization opportunities. * [Fix] Corrected PostOrderVisit call in loop_vectorize.cc - Updated the PostOrderVisit function to analyze the body of the loop node instead of the node itself, ensuring proper handling of nested loops during vectorization analysis. * fix * lint fix * fix
-
- 31 Oct, 2025 1 commit
-
-
Lei Wang authored
* 3rdparty tvm bump * bump tvm into v0.22.0 * lint fix * rebase tvm * Update submodule tvm to latest commit 3085bc4 * Refactor: Update configuration retrieval in CopyNode and adjust test registration in tilelang * test fix * add requirement * atomic_fix * atomic_fix * phaseout py39 * optimize * optimize * lint fix * do not clean cache * do not clean cache * [Minor] Minor update for Python versions and dependencies * [Lint] fix lint for py39 * [Lint] fix lint for ROCm * [Build][CI] Sync CI changes from upstream/sdist * [Lint] fix lint for ROCm * [Build][CI] Update `repair-wheel-command` * [Minor] update abi3audit result format * [Lint] fix lint for ROCm * [BugFix] fix build * [Lint] fix lint for ROCm * [BugFix] set rpath for libtvm and libtvm_runtime * [Deps] pin apache-tvm-ffi version * [Build] set Python 3.9 Limited API for Cython target * [Build] set Python 3.9 Limited API for Cython target * [Deps] Restore Python 3.8 support * [Build] use `apache-tvm-ffi`'s `libtvm_ffi` * [BugFix] use `;` as delimiter for RPATH on macOS * [BugFix] use `--ignore-missing-dependencies` for `delocate-wheel` * [Build] support `sccache` if available * [Build] add CIBW import test * [Build][CI] enable ccache for CIBW on Linux * [BugFix] set rpath for libtvm and libtvm_runtime * Revert "[Build][CI] enable ccache for CIBW on Linux" This reverts commit cd9ab57bb5ddd2572c60bcbbebde81480a658fd3. * [CI] fix perfbench bot * [BugFix] use Python 3.9 to build wheel * [Minor] update perfbench bot envs * [BugFix] fix CIBW environment on Linux * [CI] skip import test on CentOS 7 * [CI] use Python urllib to download file instead of Wget --------- Co-authored-by:Xuehai Pan <XuehaiPan@pku.edu.cn>
-
- 24 Oct, 2025 1 commit
-
-
Lei Wang authored
* fix int32 dtype issue * lint fix * lint * lint fix --------- Co-authored-by:Zhiwen Mo <zm125@ic.ac.uk>
-
- 20 Oct, 2025 1 commit
-
-
Lei Wang authored
* Allow dynamic extents in loop partition; warn when layout inversion falls back to NoCheck * add test and introduce predicate * test fix * fix * enhance * inverse with level * test fix * bug fix
-
- 28 Sep, 2025 1 commit
-
-
Zhiwen Mo authored
* update sm100 related utcmma, tmem, ld/st256 in src * update sm100 related utcmma, tmem, ld/st256 in tilelang * Remove deprecated GEMM examples and related README documentation for SM100 architecture support * Update GEMM implementation to replace UTCMMA with TCGEN5MMA across relevant files * Remove gemm_umma.py example and update README to reflect TCGEN5MMA terminology changes * Update README.md for gemm_sm100 example by removing outdated API sections and streamlining documentation * Update README and source files to reflect TCGEN5.MMA terminology changes * Refactor CUDA GEMM header for improved readability
-
- 24 Sep, 2025 1 commit
-
-
Kurisu authored
* Fix bug 0905: vectorize with broadcasted value * fix lint error * [Refactor] Use `tvm::tir::UseVar` and use Vectorizer * Add loop size check in vectorize planner * fix lint error
-
- 02 Sep, 2025 1 commit
-
-
Lei Wang authored
* [Refactor] Update Clang-Tidy Checks and Improve Code Consistency - Enhanced .clang-tidy configuration by adding specific checks for better bug detection and performance optimization. - Refactored function signatures across multiple files to use `const` references for parameters, improving performance and code clarity. - Updated various methods to ensure consistent handling of parameters, particularly in `AddPredicate`, `Substitute`, and `PlanLoopPartition` functions. - Improved readability by replacing size checks with `empty()` method calls in several locations, ensuring clearer intent in the code. - General code cleanup and adherence to best practices for better maintainability. * [Refactor] Enhance Code Consistency and Clang-Tidy Configuration - Updated .clang-tidy configuration to include additional checks for improved code quality and performance. - Refactored function signatures across multiple files to use `const` references, enhancing performance and clarity. - Replaced size checks with `empty()` method calls in various locations for clearer intent. - Improved handling of parameters in several functions, ensuring consistent usage of `std::move` where applicable. - General code cleanup to adhere to best practices and improve maintainability. * [Refactor] Integrate Clang-Tidy Checks and Enhance Code Consistency - Added clang-tidy checks to the format script for improved code quality assurance. - Refactored function signatures across multiple files to consistently use `const` references, enhancing performance and clarity. - Updated the requirements-lint.txt file to include clang-tidy as a dependency. - General code cleanup to adhere to best practices and improve maintainability. * [CI] Update AMD CI Workflow to Include Build Directory Creation - Added steps to create a build directory and configure CMake with ROCm support during the format check process. - Ensured cleanup of the build directory after the format check to maintain a clean workspace. * [Refactor] Remove Unused Member Variables in AtomicAddNode and CopyNode - Removed the `args_` member variable from both `AtomicAddNode` and `CopyNode` classes to streamline the code and eliminate unnecessary data members. - This change enhances code clarity and maintainability by focusing on relevant attributes for each class. * [Refactor] Update Clang-Tidy Integration and Code Improvements - Modified the format script to include the `-fix` option in the clang-tidy command for automatic code fixes. - Refactored the `AtomicAddVectorizePlanner` class to improve variable handling and consistency, including changes to member variable types and function signatures. - Enhanced code clarity by removing unnecessary `std::move` calls and ensuring consistent usage of types across the class. - General code cleanup to adhere to best practices and improve maintainability. * [Refactor] Improve Parameter Handling and Consistency in AtomicAddVectorize - Updated function signatures in `AtomicAddVectorizePlanResult` and `AtomicAddVectorizeRewriter` to use `const` references and `std::move` for better performance and clarity. - Enhanced the `UpdateVectorSize` method to accept `const Array<PrimExpr>&` for improved efficiency. - General code cleanup to maintain consistency and adhere to best practices. * [CI] Add Git Submodule Initialization to CI Workflow - Included a step to initialize and update git submodules recursively in the CI workflow. - This change ensures that all necessary submodules are available during the format check process, improving build reliability. * [CI] Add Git Submodule Update Step to Format Check - Included a command to initialize and update git submodules recursively in the CI workflow during the format check process. - This enhancement ensures that all required submodules are available, contributing to improved build reliability. * [Refactor] Update Function Signatures in AtomicAddVectorize - Modified the `VectorizeAtomicAdd` function signature to use `const` references for `thread_var` and `thread_bounds`, enhancing performance and code clarity. - This change aligns with previous refactoring efforts to improve parameter handling and consistency across the codebase.
-
- 17 Aug, 2025 1 commit
-
-
Lei Wang authored
* Update submodule 'tvm' to commit e11521e6936a827efa334588d29571fbb4620107 * Support strided tensors * Refactor target attribute helper functions for improved clarity * No code changes made in proxy.py and setup.py * lint fix * lint fix via gemini * lint fix * test fix * test fix * lint fix * Update wrapper.py * test fix * Enhance test for InjectSoftwarePipeline by adding LowerOpaqueBlock transformation and updating expected function signature to use match_buffer for better clarity. * lint fix --------- Co-authored-by:Chenggang Zhao <chenggangz@deepseek.com>
-
- 25 May, 2025 1 commit
-
-
Lei Wang authored
* [Refactor] Enhance GEMM Warp Partitioning Logic and Introduce Buffer Remapping (#516) * Improved the warp partitioning logic in `Gemm::ComputeWarpPartition` to better accommodate various GEMM policies, including FullRow, FullCol, and Square, ensuring optimal performance based on matrix dimensions. * Introduced a new `RemapBufferRewriter` class to handle buffer reference updates and padding annotations during statement transformations, enhancing memory access safety and clarity. * Updated the `OptimizeForTarget` function to include a new step for configuring index bitwidth, improving the overall optimization process. * Refactored existing code to utilize constants for warp sizes, enhancing maintainability and readability. * Added checks to ensure correct warp allocation and padding map handling, improving robustness in memory management strategies. * [Refactor] Update ConfigIndexBitwidthRewriter to Support Auto-Check Feature * Modified the constructor of `ConfigIndexBitwidthRewriter` to include an `auto_check` parameter, allowing for dynamic bitwidth adjustments based on input conditions. * Enhanced the `VisitExpr_` methods to apply the new auto-check logic, ensuring that integer types are upgraded to 64 bits when necessary, or to a specified index bitwidth otherwise. * Updated the `ConfigIndexBitwidth` pass to determine the index bitwidth based on the presence of configuration, improving flexibility in handling different scenarios. * Add dynamic matrix multiplication example and corresponding test * Introduced `example_dynamic.py` to demonstrate dynamic matrix multiplication using TileLang and PyTorch, including a main function for execution and performance profiling. * Added `test_example_dynamic.py` to validate the functionality of the dynamic matrix multiplication example. * The example includes detailed parameter configurations and checks against PyTorch's implementation for correctness. * lint fix * Add get_num_sms function to retrieve the number of streaming multiprocessors on the CUDA device * Implemented the `get_num_sms` function in `cuda_driver.py` to return the count of streaming multiprocessors for a specified CUDA device. * Updated the `__init__.py` file to include the new function in the module exports. * lint fix * Add global barrier state and expectation handling in CUDA code generation * Introduced `vid_global_barrier_state_` and `vid_global_barrier_expect_` to manage global barrier synchronization in the CUDA code generator. * Updated `Finish` method to declare the global barrier state if needed. * Implemented handling for `EvaluateNode` to initialize the barrier expectation. * Removed unnecessary extern declaration for the global barrier state in `PrintStorageSync` method. * Enhanced CUDA FP8 type definitions for better alignment and structure.
-
- 30 Apr, 2025 1 commit
-
-
Lei Wang authored
* [Refactor] Update KernelLaunch to clarify CPU and GPU kernel launch logic * Added comments to distinguish between CPU and GPU kernel launch sections for better code readability. * Changed the creation of empty blocks to use a consistent "root" identifier, enhancing clarity in frame management. * [Refactor] Rename operations for consistency in lower_hopper_intrin and related files * Updated function names from CamelCase to snake_case for better consistency across the codebase. * Refactored calls to `CreateTMADescriptorOp`, `CreateListofMBarrierOp`, and similar functions to their new names: `create_tma_descriptor`, `create_list_of_mbarrier`, etc. * Adjusted corresponding test cases to reflect these changes, ensuring compatibility with the new naming conventions. * [Refactor] Rename operations to snake_case for consistency * Updated function names from CamelCase to snake_case across various files, including `CreateTMADescriptorOp` to `create_tma_descriptor`, `GetMBarrierOp` to `get_mbarrier`, and others. * Adjusted corresponding calls and definitions in the codebase to reflect these naming changes, ensuring uniformity and improved readability. * Enhanced layout inference and loop partitioning logic to accommodate the new naming conventions. * [Feature] Introduce Warp Specialization and Eliminate Storage Sync for MBarrier * Added a new example `gemm_ws.py` demonstrating matrix multiplication with warp specialization using TileLang. * Implemented `WarpSpecializeFrame` and `WarpSpecialize` functionality to manage warp group indices in TIR frames. * Introduced `EliminateStorageSyncForMBarrier` transformation to optimize storage synchronization in mbarrier regions. * Enhanced the TileLang API with new methods for retrieving block and thread extents. * Updated the `LowerAndLegalize` and `OptimizeForTarget` functions to incorporate the new transformation. * Improved layout inference and kernel launch logic for better performance and clarity. * [Refactor] Clean up code formatting and improve readability * Added blank lines for better separation of code blocks in `gemm_ws.py`, `phase.py`, `kernel.py`, and `warpgroup.py`. * Reformatted the `tilelang.compile` call in `gemm_ws.py` for improved clarity. * Updated comments in `warpgroup.py` to clarify the availability of the `WarpSpecialize` function for NVIDIA GPUs. * Ensured consistent spacing and formatting across multiple files to enhance overall code readability. * lint fix * [Refactor] Update mbarrier functions for improved clarity and consistency * Refactored `mbarrier_wait_parity` and `mbarrier_arrive` functions in `builtin.py` to accept explicit parameters for better readability. * Updated calls in `gemm_ws.py` to use the new function signatures, enhancing code clarity. * Adjusted `warpgroup.py` to remove unused thread extent variable, streamlining the code. * Added detailed docstrings to clarify usage examples for memory barrier functions. * Added blank lines in `mbarrier_wait_parity` and `mbarrier_arrive` functions in `builtin.py` for improved code readability and separation of logical sections.
-
- 26 Apr, 2025 1 commit
-
-
Lei Wang authored
[Enhancement] Simplify vectorization process in loop_vectorize.cc and add atomic add test (#436) (#439) * Removed redundant simplification step in vectorization logic to streamline performance. * Introduced a new test for atomic addition in TileLang, validating functionality with a reference implementation using PyTorch.
-
- 19 Apr, 2025 1 commit
-
-
Lei Wang authored
* Update TVM submodule and enhance vectorization logic in loop_vectorize.cc - Updated the TVM submodule to the latest commit. - Simplified the vectorization process by ensuring that the vectorized expression is simplified after vectorization, improving expression handling. - Added checks in loop_fusion_utils.h to prevent fusion of loops with non-power-of-2 extents, enhancing robustness in loop transformations. * lint fix
-
- 17 Apr, 2025 1 commit
-
-
Lei Wang authored
* Update CI configuration to run pytest with automatic parallelization using the '-n auto' option. * Enhance Cython JIT Adapter Compilation Logic - Improved the locking mechanism during the compilation of the Cython JIT adapter to prevent race conditions. - Added checks to determine if another process has already compiled the library, reducing unnecessary recompilation. - Cleaned up the code by removing redundant imports and ensuring proper handling of temporary files during compilation failures. - Updated vectorization logic in loop_vectorize.cc to allow optional simplification of vectorized expressions. This update enhances performance and reliability in the JIT compilation process. * lint fix * Update CI configuration to run pytest with 4 parallel jobs instead of auto-detection * Add pytest markers for serial execution in MHA tests - Added @pytest.mark.serial to multiple MHA test functions to ensure they run sequentially. - This change improves test reliability by preventing potential race conditions during execution. * Update TVM submodule and enhance vectorization logic in loop_vectorize.cc - Updated the TVM submodule to the latest commit. - Modified the vectorization logic to include optional simplification of vectorized expressions and added checks to ensure the usage of vectorized variables, improving performance and reliability in expression handling. * Remove @pytest.mark.serial from multiple MHA test functions to allow parallel execution. This change enhances test performance by enabling concurrent test runs while maintaining reliability. * Remove tvm_simplify_test.py file, eliminating the test for expression simplification in TVM. This cleanup helps streamline the codebase by removing unused test cases. * Remove unused pytest import from test_tilelang_kernel_mha.py to streamline the test file. * lint fix * Update TVM submodule and refine vectorization logic in loop_vectorize.cc - Updated the TVM submodule to the latest commit. - Adjusted the return statements in loop_vectorize.cc to improve expression handling and ensure consistency in the visitor pattern. * Refactor vectorization logic in loop_vectorize.cc - Removed the check for the usage of the vectorized variable in the vectorization logic, simplifying the expression handling. - This change enhances the clarity and efficiency of the vectorization process. * Enhance vectorization checks in loop_vectorize.cc - Added a check to ensure the vectorized expression uses the vectorized variable, improving the robustness of the vectorization logic. - This change refines the expression handling and ensures that only valid vectorized expressions are processed. * Implement non-local buffer checks for loop vectorization in layout_inference.cc - Added logic to check for non-local buffer loads and stores before applying vectorization to loops. This enhancement ensures that vectorization is only applied when appropriate, improving the correctness of the loop transformations. * Refactor buffer handling in pipeline planning and layout inference - Renamed GlobalCopyPatternDetector to BufferRegionCollector for clarity and updated its logic to collect buffer read/write regions. - Enhanced the handling of conditional expressions in pipeline planning, allowing for better management of stages related to conditional statements. - Improved the processing of buffer regions during read/write operations, ensuring accurate tracking of buffer usage across different stages. * Refactor vectorization checks in loop_vectorize.cc - Removed the check for the usage of the vectorized variable in the vectorization logic, simplifying the expression handling. - This change enhances the clarity and efficiency of the vectorization process, ensuring that valid vectorized expressions are processed without unnecessary checks.
-
- 15 Apr, 2025 1 commit
-
-
Lei Wang authored
* make it python 3.8- happy * [Enhancement] Improve loop partitioning and vectorization logic in layout inference and loop vectorization - Enhanced the VisitStmt_ method to support local buffer handling in parallel loops, allowing for register usage without explicit thread binding. - Updated loop vectorization logic to simplify expressions and ensure accurate vector size calculations, improving performance and clarity in the vectorization process. * lint fix
-
- 29 Mar, 2025 1 commit
-
-
Zhengju Tang authored
* [Dynamic Symbolic] Refactor passes with dynamic symbolic and check shape bound precisely * lint fix * update license --------- Co-authored-by:LeiWang1999 <leiwang1999@outlook.com>
-
- 13 Mar, 2025 1 commit
-
-
zqh-wz authored
* upgrade cutlass to upstream v3.8.0 * Implement fp8 gemm and add example script * Fix dtype retrieval with map_torch_type for fp8 inputs * Disable vectorization of fp8 values * Make MMA declaration compatible with cutlass 3.4.0+ * Add test for fp8 T.gemm * fix indent * fix indent * Add copyright and license header * Add copyright and license header * lint fix * Refactor matmul_nt and assert_matmul_correctness functions for improved readability by consolidating parameter definitions and adjusting formatting. * clang format lint --------- Co-authored-by:
Lei Wang <34334180+LeiWang1999@users.noreply.github.com> Co-authored-by:
LeiWang1999 <leiwang1999@outlook.com>
-
- 09 Mar, 2025 1 commit
-
-
Lei Wang authored
* [Refactor] Update BitBLAS Benchmark with TileLang Carver Imports and Roller Hints Generation - Replace BitBLAS imports with TileLang Carver imports in benchmark_matmul.py - Modify roller hints generation using new TileLang Carver template and utility functions - Update get_roller_hints_from_func to handle None cases and improve return logic - Adjust DefaultPolicy to handle different codegen dictionary formats * [Refactor] Update Thread Binding and Import Statements in TileLang Kernels - Replace T.thread_binding() with T.get_thread_binding() across multiple kernel test files - Update import statements for MMA layout and macro generator in dequantize GEMM and FP8 examples - Move map_torch_type utility function to tilelang.utils.tensor - Remove unnecessary imports and improve code organization * Refactor Native Sparse Attention Example with Enhanced Triton Kernel - Update parallel_nsa_fwd_kernel to support more flexible sparse attention computation - Add support for block counts and offsets in the Triton kernel - Modify kernel grid and computation logic for improved performance - Update example script to use naive_nsa_simple reference implementation - Improve type hints and kernel configuration * Add Native Sparse Attention Examples with Tilelang and Triton Implementations - Introduce new example scripts for native sparse attention: * example_tilelang_nsa_fwd.py: Forward pass implementation using TileLang * example_tilelang_nsa_decode.py: Decoding-specific sparse attention implementation * example_triton_nsa_fwd.py: Triton-based sparse attention forward pass - Update reference.py with naive implementations for sparse attention - Support different sparse attention scenarios including forward pass and inference - Add comprehensive testing and validation against reference implementations * lint fix * Add Variable-Length Native Sparse Attention Examples for TileLang and Triton - Introduce new example scripts for variable-length native sparse attention: * example_tilelang_nsa_fwd_varlen.py: TileLang implementation with variable sequence lengths * example_triton_nsa_fwd_varlen.py: Triton implementation with variable sequence lengths - Update reference.py to support variable-length sparse attention scenarios - Enhance existing sparse attention implementations to handle variable-length inputs - Add comprehensive testing and validation for variable-length sparse attention * Refactor Native Sparse Attention Examples: Code Style and Formatting Improvements - Standardize function and parameter formatting across NSA example files - Improve code readability by adjusting indentation and line breaks - Enhance type hints and parameter alignment - Remove unnecessary whitespaces and optimize imports - Maintain consistent code style across TileLang and Triton implementations * Add debug logging and extend execution backend in JIT and loop vectorization - Add detailed logging in loop vectorization to help diagnose buffer shape handling - Extend JIT execution backend to include 'cython' option - Improve boundary condition checks in BufferLoadNode visit method * Remove debug logging in loop vectorization BufferLoadNode visit method - Remove unnecessary INFO log statements in VisitExpr_ method - Simplify code by eliminating redundant logging - Maintain core logic for handling buffer load node visits
-
- 15 Feb, 2025 1 commit
-
-
Lei Wang authored
* bump version into v0.1.0 * [Enhancement] Add custom develop command for editable installs and update .gitignore * [Documentation] Update README to include system dependencies installation instructions * [Build] Update setup.py to support library file copying for both release and develop modes * [Build] Refactor library file copying logic in setup.py * [Documentation] Remove unnecessary install section header in Installation.md * [Build] Add tox configuration and local distribution script for multi-Python version support * [Build] Improve git submodule update function with better error handling * [Build] Update LLVM configuration path in ROCm installation script * [Build] Add .tox/ to .gitignore for tox testing environment * [Build] Add support for TVM prebuild path configuration in CMakeLists.txt * [Cleanup] Remove unused TVM runtime error codes header * [Cleanup] Fix TVM grid constant type reference in CUDA module * [Cleanup] Remove unused customized_code function from IR module * [Feature] Add TileLang thread synchronization and storage access analysis passes * [Build] Reorder DLL search path directories for more flexible library loading * [Refactor] Improve thread synchronization and library path handling - Rename ThreadSync and TileLangThreadSync functions in C++ code - Update Python docstring for ThreadSync with more detailed description - Reorder library path detection in tilelang environment setup - Minor comment and code cleanup in CUDA and warp specialization modules * [Refactor] Improve thread synchronization code style and formatting - Standardize pointer type spacing in storage_access.h and storage_access.cc - Update whitespace and indentation in thread_storage_sync.cc - Reorder include statements in thread_partial_sync.cc - Minor code formatting improvements across thread synchronization files * [Refactor] Fix global function registration for ThreadSync - Correct global function registration to use ThreadSync instead of TileLangThreadSync - Update TVM global registration to match recent refactoring efforts * [Refactor] Simplify ThreadSync global function registration - Remove unnecessary whitespace in global function registration - Compact the TVM global registration line for ThreadSync * [Feature] Add WebGPU code generation support in TileLang - Implement WebGPU code generator (codegen_webgpu.cc and codegen_webgpu.h) - Add WebGPU target support in lower.py and target.py - Update CMakeLists.txt to include WebGPU codegen source files - Introduce WebGPU-specific code generation for WGSL shader language * [Refactor] Improve WebGPU code generation formatting and readability - Enhance code formatting in codegen_webgpu.cc and codegen_webgpu.h - Standardize pointer type spacing and indentation - Improve line breaks and reduce line length for better readability - Minor code style improvements in WebGPU code generation * [Test] Add WebGPU matrix multiplication code generation test - Implement test_webgpu_codegen.py for WebGPU matrix multiplication - Add assert_gemm_codegen function to validate WebGPU code generation - Include basic matrix multiplication kernel test case * Update README with WebGPU codegen support announcement
-
- 11 Jan, 2025 2 commits
-
-
Lei Wang authored
* README.md fixed * update test ci * Lint and Typo Fix * Clang Format Lint Fix
-
Lei Wang authored
* Add format.sh script for code formatting and linting * docs update * center align the title * lint fix * add ignore * Add .gitignore for 3rdparty directory * Add requirements-dev.txt, requirements-test.txt, and requirements.txt * 3rdparty * Add gemm.h, CMakeLists.txt, _ffi_api.py, __init__.py, runtime.h, reduce.h, loop_partition.h, utils.h, and loop_vectorize.h * Refactor CMakeLists.txt and include statements - Update CMakeLists.txt to use a newer version of CMake and add project name - Remove unnecessary include directories Fix include paths in layout.cc, codegen.cc, codegen.h, rt_mod.cc, frontend_legalize.cc, inject_pipeline.cc, layout_inference.cc, loop_vectorize.cc, and lower_tile_op.cc - Update include paths to use relative paths instead of absolute paths * Update submodule for 3rdparty/tvm * update * load dll first * Refactor CMakeLists.txt and include statements * Refactor CMakeLists.txt and include statements * git keep update * Refactor CMakeLists.txt and include statements * Refactor CMakeLists.txt and include statements * refactor code structure * Update Readme * CMakeLists Customized * update readme * update README * update readme * update usage * with TVM_IMPORT_PYTHON_PATH to handle own tvm build python import * annotate lower transform global func with `transform` prefix * Migrate Simplify Pass from tilelang tvm branch * enhance system environment handling with __init__ and CMake * Initial commit * CODE_OF_CONDUCT.md committed * LICENSE committed * README.md committed * SECURITY.md committed * SUPPORT.md committed * CODE_OF_CONDUCT Commit * LICENSE Commit * SECURITY Commit * SUPPORT Commit * Modify Support * Update README.md * security ci update * remove examples * Update and implement clang-format * add composable kernel components * Migrate from latest update * submodule update * Test update * Update License * Spell check * lint fix * add clang-tidy to apply static analysis for c source * update tilelang examples * Update Install Docs * Refactor filetree * Enhance Install * conflict resloved * annotate_version * Initial Update * test fix * install * Implement setup.py * lint fix * Separate Init * Separate test * docker file commit * add logo * Update Readme and Examples * update readme * update logo * Implement AMD Installation * Add License * Update AMD MI300x Benchmark * update README * update mi300 benchmark scripts * update ignore * enhance build scirpt * update image * enhance setup.py to remove duplicated libraries * remove debug files * update readme * update image * update gemm examples * update flashattention README * readme update * add cmake into requirements * libinfo fix * auto update submodule * lint fix * Fix AMD Build and Test * Update check for transpose attribute for CDNA Arch * typo fix for amd * Implement Matmul Benchmark * Refactor Code * [TypoFix] Fix GEMM Example * [Docs] Init Linear Attention README * [TYPO] Typo fix * [Lint] Lint Fix * enhance example with intrinsics * [Enhancement] Improve Buffer Collection during IR Parser * [Dev] Introduce Current classmethod to get current frame * submodule update * fake test pass update * support thread_extent_api * code optimize * Add GEMM function implementation for matrix multiplication * Update logging format to reflect TileLang in logger messages * Refactor CMakeLists.txt for improved readability and set default build type to Release * Support Gemm SS Primitives Implementation * [README] Upload Tile Language Logo (#5) * update logo * Update README.md to enhance formatting and center the title --------- Co-authored-by:
microsoft-github-operations[bot] <55726097+microsoft-github-operations[bot]@users.noreply.github.com> Co-authored-by:
Microsoft Open Source <microsoftopensource@users.noreply.github.com> Co-authored-by:
Yu Cheng <yu.cheng@pku.edu.cn>
-