- 29 Mar, 2025 1 commit
-
-
Zhengju Tang authored
* [Dynamic Symbolic] Refactor passes with dynamic symbolic and check shape bound precisely * lint fix * update license --------- Co-authored-by:LeiWang1999 <leiwang1999@outlook.com>
-
- 22 Mar, 2025 1 commit
-
-
Lei Wang authored
* Add GPU kernel for 2D continuous cumulative sum in TileLang example - Introduced a new example script `example_tilelang_cumsum.py` that generates a GPU kernel for 2D continuous cumulative sum. - Implemented functions to handle kernel configuration, memory allocation, and inclusive scan operations. - Added a main execution block to demonstrate the kernel's functionality using PyTorch for tensor operations. - Enhanced the example with error handling for power-of-two configurations and validation of results against PyTorch's built-in cumulative sum function. * Refactor TileLang examples and enhance kernel compilation - Updated `example_tilelang_cumsum.py` to improve GPU kernel generation for 2D continuous cumulative sum, including better parameter handling and error checking. - Refactored `example_mha_bwd.py` to enhance kernel compilation readability and maintainability. - Modified `kernel_cache.py` to prevent saving kernels to disk when using the DLPack backend, ensuring proper cache management. - Added `get_block_bindings` function to `kernel.py` for improved access to block bindings in kernel launch frames. - Cleaned up import statements in `__init__.py` for better organization and clarity. * Enhance GPU kernel for 2D continuous cumulative sum in TileLang example - Added additional spacing for improved readability in `example_tilelang_cumsum.py`. - Refined kernel structure to enhance clarity and maintainability during GPU kernel generation for cumulative sum operations. * Refactor CUDA post-processing callback registration in TileLang - Introduced a new decorator `register_cuda_postproc_callback` for registering CUDA post-processing functions, enhancing usability and flexibility. - Updated existing callback implementations to utilize the new decorator, improving code clarity and maintainability. - Added debug prints to the CUDA code generation process for better traceability during development. - Refactored the `OptimizeForTarget` function to streamline conditional statement handling in the pipeline transformation. - Cleaned up the `inject_pipeline.cc` file by removing redundant code related to statement grouping and condition handling. * lint fix * Enhance BlockSparse GEMM Example with Autotuning and Configurable Parameters - Added argument parsing to allow dynamic configuration of matrix dimensions and sparsity ratio. - Implemented a function to generate various kernel configurations for autotuning. - Refactored the main execution block to support both autotuned and default configurations. - Improved the block mask generation to accommodate specified sparsity levels. - Updated the kernel compilation process to utilize the new configurations and ensure accurate results verification.
-
- 17 Mar, 2025 1 commit
-
-
Lei Wang authored
* Refactor GEMM and Bulk Copy operations to enhance layout handling and support for Hopper architecture - Update `ComputeWarpPartition` to include a new parameter for Hopper WGMMA support. - Modify layout checks in `LowerBulkCopy` to accommodate new GEMM layout types. - Enhance layout inference logic in `InferLayout` for better compatibility with Hopper architecture. - Include necessary header files for built-in operations and layout inference improvements. * Refactor parameter formatting in CUDA matrix load functions for consistency - Adjusted parameter alignment in `ptx_ldmatrix_x1`, `ptx_ldmatrix_x2`, `ptx_ldmatrix_x4`, and their transposed counterparts for improved readability. - Added a blank line in `get_tensor_supply` function in `tensor.py` to enhance code clarity. * Enhance tensor supply generation in `get_tensor_supply` function - Introduced handling for unsigned integer and float8 tensor types, allowing for specific random tensor generation based on data type. - Updated logic to return appropriate random tensors for different data types, improving flexibility and functionality of tensor supply generation. - Refactored existing conditions for clarity and maintainability. * Fix tensor supply generation logic in `get_tensor_supply` function - Updated the variable reference from `tensor` to `param` to ensure correct handling of tensor data types. - Improved the accuracy of unsigned integer and float8 checks for tensor supply generation, enhancing functionality and reliability. * Enhance tensor supply checks in `get_tensor_supply` function - Updated the logic for identifying unsigned integers and float8 types by using `removeprefix` on the dtype string, improving accuracy in tensor supply generation. - Ensured better handling of tensor data types for more reliable random tensor generation based on the updated checks. * Enhance KernelParam functionality and improve tensor supply checks - Added methods `is_unsigned` and `is_float8` to the `KernelParam` class for better type identification of parameters. - Updated the `get_tensor_supply` function to utilize the new methods, improving clarity and accuracy in tensor supply generation based on parameter types.
-
- 14 Mar, 2025 1 commit
-
-
Yu Cheng authored
* [Dev] Implement IfStmtBinding and MergeIfStmt transformations - Add IfStmtBinding to bind If statements to each statement in SeqStmt, enhancing the handling of conditional statements. - Introduce MergeIfStmt to merge consecutive If statements within SeqStmt, optimizing the structure of conditional logic. - Update phase.py to apply IfStmtBinding and MergeIfStmt transformations for the "sm_90" target. - Enhance __init__.py with new functions for IfStmtBinding and MergeIfStmt, providing a clear interface for these transformations. * Update license header in if_stmt_binding.cc * Update license header in merge_if_stmt.cc --------- Co-authored-by:Lei Wang <34334180+LeiWang1999@users.noreply.github.com>
-
- 12 Mar, 2025 1 commit
-
-
Lei Wang authored
* Optimize CMake build process with dynamic job count calculation - Modify build_csrc function to use 90% of available CPU cores - Ensure at least one job is used during compilation - Improve build performance by dynamically adjusting parallel job count * Optimize build_csrc function with multiprocessing module - Replace os.cpu_count() with multiprocessing.cpu_count() - Maintain existing 90% CPU utilization logic - Improve CPU core count calculation for build process * Add dynamic shape support with out_idx in Cython JIT kernel compilation - Implement `run_cython_dynamic_shape_with_out_idx` function in test_tilelang_jit_gemm_cython.py - Update Cython wrapper to handle dynamic symbolic shapes during tensor allocation - Add support for resolving dynamic shape dimensions using input tensor references - Enhance flexibility of JIT kernel compilation with symbolic shape handling * Enhance error reporting for dynamic symbolic shape resolution in Cython JIT kernel - Add detailed error message when a dynamic symbolic dimension is not found in dynamic_symbolic_map - Improve debugging by providing context about missing symbolic dimensions - Maintain existing dynamic shape resolution logic * Fix Copy operation handling for scalar and multi-dimensional tensors - Add special handling for scalar tensor copy operations - Enhance error reporting in MakeIndices method with more detailed diagnostic information - Improve SIMT loop generation to support zero-dimensional tensors - Add explicit check and handling for scalar tensor scenarios * Refactor Copy operation code formatting and improve readability - Improve code formatting in MakeIndices and MakeSIMTLoop methods - Add line breaks to enhance readability of complex ICHECK statements - Simplify code structure in scalar tensor handling - Remove unnecessary whitespace and improve code alignment * Simplify GEMM example with direct kernel compilation - Update copyright header to Tile-AI Corporation - Remove Profiler import and usage - Replace tilelang.lower() with tilelang.compile() - Simplify kernel execution workflow - Update kernel source retrieval method * Enhance block sparse attention implementation - Update `blocksparse_flashattn` to use 2 stages for improved performance. - Change `block_mask_dtype` from `int8` to `bool` for better memory efficiency. - Modify condition checks in the kernel to utilize boolean values. - Introduce a new example for top-k sparse attention and a benchmark for native sparse attention. - Add support for asynchronous copy in PTX and improve pipeline planning with condition handling. * Refactor and clean up code formatting across multiple files - Added whitespace for improved readability in `example_blocksparse_gemm.py`, `example_tilelang_nsa_fwd.py`, and `benchmark_nsa_fwd.py`. - Enhanced code structure and alignment in `inject_ptx_async_copy.cc` and `pipeline_planning.cc`. - Updated comments and documentation for clarity in `__init__.py` and `phase.py`. - Ensured consistent formatting and style across the codebase.
-
- 06 Mar, 2025 1 commit
-
-
Yu Cheng authored
* [Dev] Adjust computation logic to avoid precision loss when casting acc_s from float to float16 - Remove redundant `acc_s_0` fragment in flash attention kernel - Simplify memory copy and reduction operations - Reorder memory copy and scaling steps for improved performance - Add Hopper-specific synchronization method in CUDA reduce template - Update reduce operation to use architecture-specific synchronization * [Dev] Add DeepSeek MLA Decoding (Paged+Varlen) kernel and Performance Benchmark Script - Implement comprehensive MLA (Multi-Head Latent Attention) decoding benchmark script - Add support for multiple implementations: Torch, TileLang, FlashMLA, FlashInfer, and Triton - Create flexible configuration for benchmarking different batch sizes, sequence lengths, and head configurations - Implement performance comparison and CSV output for detailed performance analysis - Add command-line argument support for targeted benchmarking and comparison * [Dev] Refactor MLA Paged Decoding Kernel with Improved Block Handling and Precision - Replace `d` parameter with `dv` to clarify value dimension in MLA decoding - Enhance block distribution logic for split KV processing - Improve handling of remaining blocks in split KV computation - Add initialization of `lse_max_local` to prevent potential precision issues - Optimize block start and range calculations for more accurate sequence processing * lint
-
- 28 Feb, 2025 1 commit
-
-
Yu Cheng authored
[Dev][Bugfix] Fix bug in ThreadTagChecker; Add WgmmaSync rewriter and add MHA WGMMA pipelined example (#128) * [Dev] Add RetNet Linear Attention example * [Dev] Add WgmmaSync rewriter for pipelined WGMMA operations and add MHA WGMMA pipelined example (FA3-like scheduling) This commit introduces a new transformation pass `RewriteWgmmaSync` to optimize warp group matrix multiply accumulate (WGMMA) operations in the TileLang compiler: - Implemented `WgmmaSyncRewriter` in `src/transform/wgmma_sync_rewriter.cc` - Added pass registration for `RewriteWgmmaSync` - Updated `tilelang/engine/phase.py` to include the new transformation pass - Updated `tilelang/transform/__init__.py` to expose the new pass The rewriter intelligently manages synchronization and dependencies between WGMMA operations, improving pipeline efficiency for complex matrix multiplication kernels. * [Bugfix] Fix bug in ThreadTagChecker for warp specialization Improve thread tag validation in warp specialized rewriter to prevent unintended transformations: - Add more precise checks for threadIdx.y and threadIdx.z - Validate thread extent to ensure only single-extent thread bindings are allowed - Prevent warp specialization for multi-extent thread bindings in y and z dimensions * lint * [CI] Add TMA descriptor attribute to transformed module in test case
-
- 25 Feb, 2025 1 commit
-
-
Lei Wang authored
* Add DeepSeek MLA decode example with Flash Attention implementation * Add GEMM SplitK and StreamK example implementations This commit introduces two new example scripts demonstrating advanced GEMM (matrix multiplication) techniques: - `example_tilelang_gemm_splitk.py`: Implements a Split-K GEMM kernel using TileLang - `example_tilelang_gemm_streamk.py`: Implements a Stream-K GEMM kernel using TileLang Both examples showcase different parallel computation strategies for matrix multiplication, with comprehensive testing using PyTorch reference implementations. * Refactor GEMM SplitK and StreamK example implementations Clean up and improve code formatting for the SplitK and StreamK GEMM example scripts: - Remove unused import (Profiler) in splitk example - Simplify line breaks and improve code readability - Standardize indentation and remove unnecessary whitespace - Optimize atomic add and copy operations for better clarity * Add block sparse attention benchmarks for multiple libraries This commit introduces comprehensive block sparse attention benchmarks for different libraries: - TileLang block sparse FMHA implementation - Triton block sparse FMHA implementation - PyTorch reference block sparse FMHA implementation - FlashAttention dense FMHA reference implementation The benchmarks include: - Configurable benchmark parameters (batch size, heads, sequence length, etc.) - Sparse mask generation using top-k and threshold methods - Performance measurement for different sparse attention configurations - Utility functions for mask generation and benchmarking * Refactor block sparse attention benchmarks with code style improvements - Add Ruff linter ignore comments to benchmark files - Improve code formatting and line breaks - Remove unused imports - Standardize print statement formatting - Enhance code readability across multiple library benchmarks * lint fix * Add CUDA atomic operations for BFLOAT16 and update function naming - Implement AtomicAdd functions for BFLOAT16 and BFLOAT16x2 in CUDA common header - Rename existing atomic add functions to use PascalCase (atomicAdd -> AtomicAdd) - Add a new __pack_nv_bfloat162 function for packing BFLOAT16 values - Update kernel and language customization to use new function names - Add return type annotations in profiler module * lint fix * Add example for Group Query Attention (GQA) forward pass using Flash Attention in TileLang This commit introduces a new example script `example_gqa_fwd_bshd.py` that demonstrates: - Group Query Attention (GQA) implementation - Flash Attention forward pass - Performance benchmarking - Configurable parameters for batch, heads, sequence length, and dimension - Autotuning support - Reference implementation comparison * Refactor IR lowering pipeline into modular phases This commit introduces a new module `phase.py` to modularize the IR lowering process by splitting the complex lowering pipeline into two distinct phases: - `LowerAndLegalize`: Handles initial IR legalization and transformation - `OptimizeForTarget`: Applies target-specific optimizations The changes simplify the lowering logic in multiple files by extracting the transformation steps into reusable functions, improving code readability and maintainability. * lintfix
-