- 17 Dec, 2025 1 commit
-
-
Lei Wang authored
* [Enhancement] Update examples and tests for improved type handling and functionality - Enhanced various example scripts to support new data types and improve compatibility with PyTorch. - Updated tests across multiple modules to ensure correct functionality with the latest changes in type handling. - Refactored code in examples to streamline operations and improve clarity, particularly in tensor operations and memory management. - Added comprehensive tests for new features and fixed existing issues related to type conversions and buffer handling. * [Refactor] Update accumulation data type to float32 across examples - Changed accumulation data type from "float" to T.float32 in multiple example scripts to ensure consistency and improve numerical stability. - This update affects various modules including flash attention, GEMM analysis, convolution, and deepseek MLA examples, enhancing type handling across the board. * [Refactor] Standardize data type usage across benchmark scripts - Updated data type definitions in benchmark scripts to use T.float16 and T.float32 consistently, enhancing clarity and type handling. - Adjusted dtype assignments in matmul functions and configuration setups to align with the new standard. - Improved overall code consistency and maintainability by ensuring uniform data type usage across various modules. * [Refactor] Standardize data type usage in templates and scripts - Updated data type definitions in various templates and scripts to use string representations (e.g., "float16", "int32") instead of T.float16 and T.int32 for improved consistency and clarity. - Enhanced overall code maintainability by ensuring uniform data type usage across multiple modules, including convolution, elementwise operations, and matrix multiplication templates. - This change aims to streamline type handling and improve compatibility with existing workflows. * [Refactor] Standardize data type usage in examples and benchmarks - Updated data type definitions in various example and benchmark scripts to use T.float16 and T.int32 consistently, enhancing clarity and maintainability. - Adjusted dtype assignments in kernel functions and configuration setups to align with the new standard. - Improved overall code consistency by ensuring uniform data type usage across multiple modules, including attention mechanisms, matrix multiplication, and GEMM examples. * [Refactor] Import dtypes from language.v2 module - Added import statement for dtypes from the language.v2 module to enhance type handling and maintain consistency across the codebase. - This change aims to streamline data type management and improve overall code clarity. * fix * [Refactor] Standardize data type usage across scripts - Updated data type definitions in various scripts to use string representations (e.g., "float16", "int8") instead of T.float16 and T.int8 for improved consistency and clarity. - Adjusted dtype assignments in functions and configuration setups to align with the new standard, enhancing overall code maintainability. - This change affects multiple modules, including benchmark and attention mechanisms, ensuring uniform data type usage throughout the codebase. * [Refactor] Update data type handling for consistency and clarity - Changed string representations of data types in the Hint class to use T.float32 and T.int32 for improved consistency. - Added new data types "int4" and "int16" to the dtypes module, enhancing type support across the codebase. - Updated function signatures and assertions in the lop3 and mxfp modules to utilize the new data types, ensuring uniformity in type handling. - This refactor aims to streamline data type management and improve overall code clarity and maintainability. * [Enhancement] Improve data type handling and error messaging - Introduced a mapping for canonical data types to their display strings, enhancing clarity in type representation. - Updated the dtype creation logic to utilize the new mapping, ensuring more intuitive handling of string inputs. - Refined error messages in the lop3 module to provide clearer feedback on invalid source formats, improving debugging and user experience. * [Fix] Correct boolean flag in GEMM SP test case - Updated the boolean flag in the test_gemm_sp_sm90 function to ensure proper functionality in the test case. - This change enhances the accuracy of the test and aligns it with expected behavior for the GEMM SP implementation. * [Refactor] Standardize data type usage across scripts - Updated data type definitions in various scripts to use T.float16 and T.bfloat16 consistently, enhancing clarity and maintainability. - Adjusted dtype assignments in function signatures and argument parsing to align with the new standard, ensuring uniform data type usage throughout the codebase. - This change affects multiple modules, including benchmarks and examples, improving overall code consistency and readability. * [Refactor] Standardize data type usage in various modules - Updated data type assignments in multiple scripts to utilize T.float32, T.int8, and T.int32 consistently, enhancing clarity and maintainability. - Adjusted function signatures and parameter types across benchmarks, examples, and tests to align with the new standard, ensuring uniform data type usage throughout the codebase. - This change improves overall code consistency and readability, impacting modules related to matrix multiplication, GEMM, and tensor operations. * [Refactor] Update argument parsing for data types in benchmarks - Changed argument parsing for data types in benchmark_matmul_intrinsic.py and benchmark_matmul_sp.py to use string representations ("float16", "int8", "float") instead of T.float16 and T.float. - This update enhances consistency in data type handling across benchmark scripts, improving clarity and maintainability. * [Refactor] Update data type handling in benchmark and example scripts - Changed data type arguments in benchmark and example scripts to use string representations ("float16") instead of T.float16 for improved consistency. - Updated function signatures and argument parsing to align with the new standard, enhancing clarity and maintainability across the codebase. - This change affects multiple modules related to attention mechanisms and tensor operations, ensuring uniform data type usage throughout the examples. * [Refactor] Fix data type conversion in multiple scripts - Corrected the usage of the data type conversion method from dtype..as_torch() to dtype.as_torch() across various benchmark and example scripts. - This change enhances consistency in data type handling and improves code readability, impacting modules related to attention mechanisms and tensor operations. * [Refactor] Update float8 data type usage across multiple scripts - Changed instances of T.float8_e4m3 to T.float8_e4m3fn in various benchmark, example, and test scripts to ensure consistency in data type handling. - This update enhances clarity and maintainability across the codebase, particularly in modules related to matrix multiplication and tensor operations. * [Refactor] Enhance float8 data type handling in CUDA code generation - Updated the handling of float8 data types in the CUDA code generation to include additional float8 variants, improving type conversion logic. - Adjusted conditions to ensure proper type checks for float8 conversions, enhancing clarity and maintainability in the codebase. - Modified layout inference to streamline float8 type checks, ensuring consistency across the implementation. - This change impacts modules related to matrix operations and CUDA code generation, improving overall type handling and conversion accuracy. * [Refactor] Streamline float8 data type handling in CUDA and related modules - Enhanced float8 data type handling in CUDA code generation by refining type conversion logic and ensuring consistent type checks. - Updated layout inference for float8 types to improve clarity and maintainability across the implementation. - This change impacts modules related to matrix operations and CUDA code generation, improving overall type handling and conversion accuracy. * [Refactor] Remove unnecessary cache disabling in float8 example script - Eliminated the call to tilelang.disable_cache() in example_group_per_split_token_cast_to_fp8.py to streamline the code. - This change enhances clarity and maintainability of the example script without affecting its functionality. * [Refactor] Update data type usage in debug print tests - Changed the argument for dtype in the test_debug_print_buffer function from a string representation to the corresponding T.bool type. - This update enhances consistency in data type handling within the test suite, improving clarity and maintainability. * lint fix * Update function parameter types from `str` to `T.dtype` for improved type safety in attention sink and related examples * Refactor `gemv_alloc_reducer` function signature for improved readability by formatting parameters across multiple lines.
-
- 12 Dec, 2025 1 commit
-
-
Lei Wang authored
-
- 27 Nov, 2025 1 commit
-
-
Lei Wang authored
* [Refactor] Improve assertion handling in CodeGenCHost and ArgBinder This commit refines the assertion message generation in CodeGenCHost by optimizing the handling of equality checks and reducing buffer size for error messages. Additionally, it enhances the ArgBinder by introducing a nullable guard mechanism for assertions, allowing for more precise error handling when binding arguments. The changes improve the clarity and efficiency of assertion handling across the codebase. * [Enhancement] Update matmul kernel and optimize argument binding This commit enhances the matmul kernel by introducing additional tensor parameters and refining the pipeline stages for improved performance. It also updates the argument binding mechanism to include a flag indicating whether buffers are used, enhancing the efficiency of buffer management. Furthermore, the optimization phase in the engine is improved by adding a simplification step, ensuring better performance and clarity in the generated code. * lint fix * [Enhancement] Add tensor checks documentation and improve argument binding assertions This commit introduces a new documentation page for host-side tensor checks, detailing the automatic validations performed by TileLang on kernel arguments. It enhances the ArgBinder by adding assertions for non-null pointers when arguments are used, improving error handling. Additionally, the optimization phase in the engine is updated to include a simplification step, ensuring better performance and clarity in the generated code. * [Enhancement] Update .gitignore and refine matmul kernel for improved performance This commit adds host checks logs to the .gitignore file to prevent unnecessary log files from being tracked. Additionally, it refines the matmul kernel by adjusting pipeline stages, updating tensor parameters, and enhancing argument handling for better performance. The changes also include improved error messages in the argument binding process, ensuring clearer diagnostics for users. * lint fix * lint fix * [Refactor] Simplify tensor_null_test function and remove ptr_null_test This commit refactors the tensor_null_test function by adding a with_bias parameter and removing the ptr_null_test function, which was previously unused. The run_test function is updated to reflect these changes, streamlining the testing process for tensor operations. * lint fix * fix
-
- 18 Nov, 2025 1 commit
-
-
Lei Wang authored
* [Refactor] Update FFI type handling and simplify argument management * Refactored FFI type definitions in runtime and code generation files to use `TVMFFIAny` instead of `TVMValue`, enhancing type clarity. * Updated function registration in `runtime.cc` to utilize canonical names for better consistency. * Simplified argument handling in the `simplify` transformation, ensuring unused buffer parameters are removed only when simplification is enabled. * Adjusted autotuner and profiler parameters to standardize the execution backend to `tvm_ffi`, improving clarity in backend selection. * Removed obsolete `adapt_torch2tvm` function from tensor utilities to streamline the codebase and reduce complexity. * [Update] Sync TVM submodule and enhance kernel source handling * Updated the TVM submodule to commit cdc2aced, ensuring compatibility with recent changes. * Added functionality to print kernel source in `example_blocksparse_gemm.py` for better debugging. * Commented out the main execution call in test files to prevent unintended execution during testing. * Introduced `tilelang.disable_cache()` in various test files to streamline testing and avoid cache-related issues. * Refactored kernel source retrieval methods to improve clarity and consistency across different execution backends. * [Refactor] Clean up imports and improve code formatting * Removed unused import of `tilelang.testing` in `test_example_blocksparse_gemm.py` to streamline the code. * Reformatted several lines in `arg_binder.cc`, `make_packed_api.cc`, `tvm_ffi.py`, and `adapter.py` for improved readability and consistency. * Updated comments and spacing in `tvm_ffi.py` to enhance clarity without altering functionality. * Update execution backend options and improve resolution logic - Changed default execution backend from "cython" to "auto" in multiple locations to allow automatic selection based on the target. - Expanded the list of supported execution backends to include "torch" and "nvrtc" across various classes and functions. - Enhanced backend resolution logic in `KernelCache` and `AutoTuner` to ensure appropriate backend selection based on the target. - Updated documentation to reflect changes in execution backend options and their defaults. * lint fix * fix * Enhance argument handling in CUDA and HIP runtime modules - Updated `ExtractFuncInfo` in `rt_mod_cuda.cc` and `rt_mod_hip.cc` to map boolean argument types to int32, ensuring compatibility with device runtime. - Refactored `BindDLTensor` in `arg_binder.cc` to improve null handling and validation checks for DLTensor parameters, utilizing expression-level guards to prevent dereferencing null pointers. - Enhanced error checking for buffer shape, strides, and data fields, ensuring robust handling of optional inputs and maintaining consistency across various checks. * lint fix * lint fix * lint fix * lint fix * minor fix * fix * recover check * Refactor argument binding and validation in `arg_binder.cc` - Improved null handling and validation checks in `BindDLTensor`, ensuring safe dereferencing of pointers. - Enhanced consistency checks for buffer shape, strides, and data fields, utilizing expression-level guards. - Updated `MakePackedAPI` to maintain code clarity and consistency in argument handling. - Minor adjustments in test files to streamline kernel execution and improve readability. * lint fix * stride fix * minor fix * fix * lint fix * lint fix * Add CUDA stream access policy window helpers and integrate with L2 persistent cache management - Introduced functions to set and reset the CUDA stream access policy window, allowing for better control over L2 cache usage. - Updated runtime files to include new FFI packed functions for managing stream attributes. - Modified lower_hopper_intrin to incorporate prologue and epilogue statements for L2 cache setup and teardown. - Enhanced tests to verify the inclusion of new FFI calls in the generated kernel source. * check with symbolic * support null ptr * Update CMakeLists and lower.py for code generation and subproject status - Added `codegen_c_host.cc` to the list of source files in CMakeLists.txt for improved code generation support. - Updated the function call in `lower.py` to use `target.build.tilelang_c` for C target host code generation, enhancing compatibility. - Marked the TVM subproject as dirty to indicate local modifications. * lint fix * Update comments for clarity in quickstart.py
-
- 23 Oct, 2025 1 commit
-
-
Wenhao Xie authored
* [Feature] Support None type as input for T.ptr and T.Tensor * lint * lint * lint * lint fix
-