1. 17 Dec, 2025 1 commit
    • Lei Wang's avatar
      [Enhancement] Update examples and tests for improved type handling functionality (#1448) · c750fb8a
      Lei Wang authored
      * [Enhancement] Update examples and tests for improved type handling and functionality
      
      - Enhanced various example scripts to support new data types and improve compatibility with PyTorch.
      - Updated tests across multiple modules to ensure correct functionality with the latest changes in type handling.
      - Refactored code in examples to streamline operations and improve clarity, particularly in tensor operations and memory management.
      - Added comprehensive tests for new features and fixed existing issues related to type conversions and buffer handling.
      
      * [Refactor] Update accumulation data type to float32 across examples
      
      - Changed accumulation data type from "float" to T.float32 in multiple example scripts to ensure consistency and improve numerical stability.
      - This update affects various modules including flash attention, GEMM analysis, convolution, and deepseek MLA examples, enhancing type handling across the board.
      
      * [Refactor] Standardize data type usage across benchmark scripts
      
      - Updated data type definitions in benchmark scripts to use T.float16 and T.float32 consistently, enhancing clarity and type handling.
      - Adjusted dtype assignments in matmul functions and configuration setups to align with the new standard.
      - Improved overall code consistency and maintainability by ensuring uniform data type usage across various modules.
      
      * [Refactor] Standardize data type usage in templates and scripts
      
      - Updated data type definitions in various templates and scripts to use string representations (e.g., "float16", "int32") instead of T.float16 and T.int32 for improved consistency and clarity.
      - Enhanced overall code maintainability by ensuring uniform data type usage across multiple modules, including convolution, elementwise operations, and matrix multiplication templates.
      - This change aims to streamline type handling and improve compatibility with existing workflows.
      
      * [Refactor] Standardize data type usage in examples and benchmarks
      
      - Updated data type definitions in various example and benchmark scripts to use T.float16 and T.int32 consistently, enhancing clarity and maintainability.
      - Adjusted dtype assignments in kernel functions and configuration setups to align with the new standard.
      - Improved overall code consistency by ensuring uniform data type usage across multiple modules, including attention mechanisms, matrix multiplication, and GEMM examples.
      
      * [Refactor] Import dtypes from language.v2 module
      
      - Added import statement for dtypes from the language.v2 module to enhance type handling and maintain consistency across the codebase.
      - This change aims to streamline data type management and improve overall code clarity.
      
      * fix
      
      * [Refactor] Standardize data type usage across scripts
      
      - Updated data type definitions in various scripts to use string representations (e.g., "float16", "int8") instead of T.float16 and T.int8 for improved consistency and clarity.
      - Adjusted dtype assignments in functions and configuration setups to align with the new standard, enhancing overall code maintainability.
      - This change affects multiple modules, including benchmark and attention mechanisms, ensuring uniform data type usage throughout the codebase.
      
      * [Refactor] Update data type handling for consistency and clarity
      
      - Changed string representations of data types in the Hint class to use T.float32 and T.int32 for improved consistency.
      - Added new data types "int4" and "int16" to the dtypes module, enhancing type support across the codebase.
      - Updated function signatures and assertions in the lop3 and mxfp modules to utilize the new data types, ensuring uniformity in type handling.
      - This refactor aims to streamline data type management and improve overall code clarity and maintainability.
      
      * [Enhancement] Improve data type handling and error messaging
      
      - Introduced a mapping for canonical data types to their display strings, enhancing clarity in type representation.
      - Updated the dtype creation logic to utilize the new mapping, ensuring more intuitive handling of string inputs.
      - Refined error messages in the lop3 module to provide clearer feedback on invalid source formats, improving debugging and user experience.
      
      * [Fix] Correct boolean flag in GEMM SP test case
      
      - Updated the boolean flag in the test_gemm_sp_sm90 function to ensure proper functionality in the test case.
      - This change enhances the accuracy of the test and aligns it with expected behavior for the GEMM SP implementation.
      
      * [Refactor] Standardize data type usage across scripts
      
      - Updated data type definitions in various scripts to use T.float16 and T.bfloat16 consistently, enhancing clarity and maintainability.
      - Adjusted dtype assignments in function signatures and argument parsing to align with the new standard, ensuring uniform data type usage throughout the codebase.
      - This change affects multiple modules, including benchmarks and examples, improving overall code consistency and readability.
      
      * [Refactor] Standardize data type usage in various modules
      
      - Updated data type assignments in multiple scripts to utilize T.float32, T.int8, and T.int32 consistently, enhancing clarity and maintainability.
      - Adjusted function signatures and parameter types across benchmarks, examples, and tests to align with the new standard, ensuring uniform data type usage throughout the codebase.
      - This change improves overall code consistency and readability, impacting modules related to matrix multiplication, GEMM, and tensor operations.
      
      * [Refactor] Update argument parsing for data types in benchmarks
      
      - Changed argument parsing for data types in benchmark_matmul_intrinsic.py and benchmark_matmul_sp.py to use string representations ("float16", "int8", "float") instead of T.float16 and T.float.
      - This update enhances consistency in data type handling across benchmark scripts, improving clarity and maintainability.
      
      * [Refactor] Update data type handling in benchmark and example scripts
      
      - Changed data type arguments in benchmark and example scripts to use string representations ("float16") instead of T.float16 for improved consistency.
      - Updated function signatures and argument parsing to align with the new standard, enhancing clarity and maintainability across the codebase.
      - This change affects multiple modules related to attention mechanisms and tensor operations, ensuring uniform data type usage throughout the examples.
      
      * [Refactor] Fix data type conversion in multiple scripts
      
      - Corrected the usage of the data type conversion method from dtype..as_torch() to dtype.as_torch() across various benchmark and example scripts.
      - This change enhances consistency in data type handling and improves code readability, impacting modules related to attention mechanisms and tensor operations.
      
      * [Refactor] Update float8 data type usage across multiple scripts
      
      - Changed instances of T.float8_e4m3 to T.float8_e4m3fn in various benchmark, example, and test scripts to ensure consistency in data type handling.
      - This update enhances clarity and maintainability across the codebase, particularly in modules related to matrix multiplication and tensor operations.
      
      * [Refactor] Enhance float8 data type handling in CUDA code generation
      
      - Updated the handling of float8 data types in the CUDA code generation to include additional float8 variants, improving type conversion logic.
      - Adjusted conditions to ensure proper type checks for float8 conversions, enhancing clarity and maintainability in the codebase.
      - Modified layout inference to streamline float8 type checks, ensuring consistency across the implementation.
      - This change impacts modules related to matrix operations and CUDA code generation, improving overall type handling and conversion accuracy.
      
      * [Refactor] Streamline float8 data type handling in CUDA and related modules
      
      - Enhanced float8 data type handling in CUDA code generation by refining type conversion logic and ensuring consistent type checks.
      - Updated layout inference for float8 types to improve clarity and maintainability across the implementation.
      - This change impacts modules related to matrix operations and CUDA code generation, improving overall type handling and conversion accuracy.
      
      * [Refactor] Remove unnecessary cache disabling in float8 example script
      
      - Eliminated the call to tilelang.disable_cache() in example_group_per_split_token_cast_to_fp8.py to streamline the code.
      - This change enhances clarity and maintainability of the example script without affecting its functionality.
      
      * [Refactor] Update data type usage in debug print tests
      
      - Changed the argument for dtype in the test_debug_print_buffer function from a string representation to the corresponding T.bool type.
      - This update enhances consistency in data type handling within the test suite, improving clarity and maintainability.
      
      * lint fix
      
      * Update function parameter types from `str` to `T.dtype` for improved type safety in attention sink and related examples
      
      * Refactor `gemv_alloc_reducer` function signature for improved readability by formatting parameters across multiple lines.
      c750fb8a
  2. 15 Dec, 2025 1 commit
  3. 12 Dec, 2025 1 commit
  4. 11 Dec, 2025 1 commit
  5. 17 Nov, 2025 1 commit
  6. 15 Oct, 2025 1 commit
    • alex_xiao's avatar
      fix bug&add amd examples (#966) · 80665cd1
      alex_xiao authored
      
      
      * [Enhancement] Refactor buffer index handling for improved precision and clarity (#668)
      
      - Enhanced buffer index handling to address precision issues by removing redundant operations.
      - Streamlined the logic for determining buffer overlaps, ensuring more accurate conflict detection.
      - Updated related documentation to reflect changes in buffer management practices.
      
      * Remove obsolete test script for AMD example, streamlining the examples directory.
      
      * Remove unused dtype_size variable in AMD example script to streamline code.
      
      * Add input configuration file and update AMD example script for enhanced flexibility
      
      - Introduced a new input.txt file for configurable parameters.
      - Modified the example_amd_flash_attn_fwd.py script to allow for a wider range of configurations, including additional options for num_stages, enable_rasterization, and k_pack.
      - Streamlined the main function for better clarity and organization.
      - Added a new test script to facilitate running the example with specified parameters.
      
      * Remove input configuration file and obsolete test script; enhance AMD example with swizzle layout annotations
      
      - Deleted input.txt and test.sh files as they are no longer needed.
      - Updated example_amd_flash_attn_fwd.py to include swizzle layout annotations for shared memory, improving bank conflict avoidance.
      - Reintroduced swizzle usage in the kernel for better performance.
      
      * Refactor AMD example script for FlashAttention-2
      
      - Updated function names for clarity, changing `get_v2_configs` to `get_configs` and `fast_flashattn_v2` to `fast_flashattn`.
      - Streamlined the main function by renaming `main_v2` to `main` and adjusting the corresponding calls.
      - Removed outdated comments and improved code organization for better readability.
      
      * Refactor formatting in AMD FlashAttention example script
      
      - Improved code readability by adjusting line breaks and indentation in the `fast_flashattn` function.
      - Streamlined the `main` function parameter formatting for consistency.
      - Removed unnecessary blank lines to enhance overall code organization.
      
      * Update example_amd_flash_attn_fwd.py
      
      * Enhance AMD example script and update CI workflows
      
      - Improved the `example_amd_flash_attn_fwd.py` script for better clarity and organization.
      - Added new CI workflows for AMD and documentation publishing.
      - Updated various requirements files to include necessary dependencies.
      - Introduced new test cases and examples for better coverage and functionality.
      - Refactored existing code for improved readability and maintainability.
      
      * Remove redundant tool cache cleanup step in AMD CI workflow
      
      * Remove `torch` dependency from `requirements-rocm.txt` to streamline requirements.
      
      * Add new AMD FlashAttention example and test script
      
      - Introduced `example_amd_flash_attn_bwd.py` for backward attention computation using TileLang.
      - Added `test.sh` script to facilitate running the new example with specified parameters.
      - Enhanced the overall structure and organization of the example for better clarity and usability.
      
      * Update configurations in `example_amd_flash_attn_fwd.py` for autotuner
      
      - Reduced the number of threads and `num_split_q` options for improved performance.
      - Adjusted `panel_size` options to streamline configuration settings.
      
      * Update submodule 'tvm' to commit 6ccc74f622c7ec4ac25d430d0f6546e7b9edb217
      
      * Update submodule 'tvm' to commit 14ff70ab142b9e5a31bbf9c7923c8a697d41e86c
      
      * Add example for AMD Flash Attention backward pass implementation
      
      - Introduced a new example script `example_amd_flash_attn_bwd.py` demonstrating the forward and backward operations of Flash Attention using TileLang.
      - Implemented JIT-compiled functions for both forward and backward passes, including preprocessing and postprocessing steps.
      - Added a main function to facilitate testing and benchmarking of the attention mechanism with configurable parameters.
      - Included reference implementation for validation against PyTorch's attention mechanism.
      
      This addition enhances the examples directory by providing a comprehensive guide for users to understand and utilize Flash Attention in their applications.
      
      * Enhance AMD Flash Attention example with additional testing capabilities
      
      - Updated `example_amd_flash_attn_bwd.py` to include more comprehensive testing features for the Flash Attention implementation.
      - Improved the main function to allow for better parameter configuration and benchmarking.
      - Added validation checks against PyTorch's attention mechanism to ensure accuracy and reliability of the example.
      
      This update aims to provide users with a more robust tool for understanding and utilizing Flash Attention in their applications.
      
      * Update submodule TVM to commit a64a5926a6e59f5417ef2501f9d88b467337cf6a
      
      * Refactor HIP intrinsic rules to CUDA
      
      - Updated file name from `intrin_rule_hip.cc` to `intrin_rule_cuda.cc` to reflect the change in focus from HIP to CUDA intrinsic rules.
      - Adjusted include paths for better organization and clarity in the code structure.
      
      * Update AMD CI workflow to uninstall specific PyTorch packages before installation
      
      - Removed the installation of `flash_attn==2.5.8` to streamline the CI process.
      - Added a step to uninstall `torch`, `torchvision`, and `torchaudio` prior to installing pre-release versions, ensuring compatibility and reducing potential conflicts.
      
      * Remove unused shared memory allocations in AMD Flash Attention backward example
      
      - Eliminated the allocation of shared memory for `dv_shared` and `dk_shared` in `example_amd_flash_attn_bwd.py` to streamline memory usage and improve performance.
      - This change focuses on optimizing the backward pass implementation by reducing unnecessary memory overhead.
      
      * Remove unnecessary pip uninstall command from AMD CI workflow
      
      - Eliminated the step to uninstall `torch`, `torchvision`, and `torchaudio` in the AMD CI workflow, as it is no longer required for the installation of pre-release versions.
      - This change simplifies the CI process and reduces potential overhead during package management.
      
      * Refactor DispatchHIPWarpActiveMask function in HIP intrinsic rules
      
      - Updated the return statement to use std::string for concatenation in the case of 16-bit types, improving code clarity.
      - Added a null check for the CallNode pointer in DispatchHIPWarpActiveMask to enhance robustness and prevent potential dereferencing issues.
      
      * Refactor formatting of HIP intrinsic rule registrations
      
      - Adjusted the formatting of TVM_REGISTER_OP calls for better readability by aligning method chaining.
      - No functional changes were made; this update focuses on code style improvements to enhance maintainability.
      
      * Update file name and documentation for HIP intrinsic rules
      
      - Renamed the file from `intrin_rule_cuda.cc` to `intrin_rule_hip.cc` to accurately reflect the focus on HIP intrinsic rules.
      - Updated the file documentation to clarify its purpose as related to HIP rather than CUDA.
      
      * Enhance DispatchHIPShuffle function with clang-analyzer comments
      
      - Added NOLINTBEGIN and NOLINTEND comments to the DispatchHIPShuffle function to suppress clang-analyzer warnings related to inner pointer usage.
      - This change improves code clarity and maintains compliance with static analysis tools.
      
      * lint fix
      
      * fix
      
      * Enhance autotuner configurations in example_amd_flash_attn_fwd.py by adding new block sizes, stages, and panel sizes. Update test script to use relative Python path and adjust parameters for consistency.
      
      * Add backward attention example to test script
      
      - Extended the test.sh script to include a new backward attention example using example_amd_flash_attn_bwd.py.
      - Added parameters for batch size, context length, and head dimensions to ensure consistency with the forward example.
      - Updated the command for the backward tile example to match the new configuration.
      
      * Refactor FlashAttention implementation in example_amd_flash_attn_bwd.py and example_amd_flash_attn_fwd.py
      
      - Introduced new functions for forward and backward configurations to enhance autotuning capabilities.
      - Updated the FlashAttention forward and backward functions to improve performance and maintainability.
      - Adjusted test script parameters for consistency and clarity, including the addition of group handling.
      - Enhanced the autotuner configurations by refining block sizes and stages for better performance tuning.
      - Updated the main function to reflect changes in parameter names and types for better usability.
      
      * Enhance FlashAttention backward implementation in example_amd_flash_attn_bwd.py
      
      - Updated the backward function to return additional outputs, including log-sum-exp (LSE) values for improved gradient calculations.
      - Refined autotuner configurations by adding new block sizes and adjusting parameters for better performance tuning.
      - Improved shared memory usage in the backward pass to optimize memory access patterns and enhance computational efficiency.
      - Updated the main function to reflect changes in parameter handling and ensure consistency with the forward pass.
      - Enhanced correctness checks in the main function to include LSE validation alongside gradient checks.
      
      * Enhance FlashAttention backward implementation in example_amd_flash_attn_bwd.py
      
      - Introduced a scaling factor for improved numerical stability in gradient calculations.
      - Optimized shared memory usage by adding new shared buffers for intermediate calculations.
      - Refined the handling of tensor fragments to improve performance and maintainability.
      - Updated the main function to ensure compatibility with the new output parameters for backward operations.
      - Removed unnecessary parameters from the test script to streamline execution.
      
      * Refactor FlashAttention implementation in example_amd_flash_attn_bwd.py and example_mha_bwd.py
      
      - Updated the forward and backward functions to improve numerical stability and performance.
      - Enhanced shared memory usage by optimizing buffer allocations and reducing unnecessary parameters.
      - Adjusted autotuner configurations for better performance tuning and compatibility with new output parameters.
      - Added debugging and benchmarking functions for improved correctness verification and performance analysis.
      - Updated the main function to reflect changes in parameter handling and ensure consistency across examples.
      
      * Enhance FlashAttention backward implementation in example_amd_flash_attn_bwd.py
      
      - Updated scaling factor application for improved numerical stability in gradient calculations.
      - Refined tensor handling to ensure consistency with forward pass operations.
      - Optimized atomic operations for writing gradients to dK and dV using fp32 for better precision.
      - Adjusted comments for clarity and alignment with standard implementation practices.
      
      * Expand autotuner configurations in example_amd_flash_attn_bwd.py and update test.sh
      
      - Increased the range of block sizes and stages for forward and backward configurations to enhance performance tuning.
      - Adjusted the test script to include additional parameters for batch size and head dimensions, ensuring consistency with the forward example.
      - Improved comments for clarity and alignment with the updated configurations.
      
      * Enhance performance calculations and benchmarking in example_amd_flash_attn_bwd.py
      
      - Updated FLOPs calculation to account for both forward and backward passes, clarifying the total computational cost.
      - Modified benchmarking functions to evaluate the complete forward and backward performance of both reference and Tile-lang implementations.
      - Improved comments for better understanding of the performance metrics and implementation details.
      - Removed unnecessary parameter from test.sh to streamline execution.
      
      * Remove forward attention test commands from test.sh and retain backward attention execution for streamlined testing.
      
      * Refactor FlashAttention forward and backward implementations in example_amd_flash_attn_bwd.py and example_amd_flash_attn_fwd.py
      
      - Updated the forward function to return both output and log-sum-exp (LSE) values for improved gradient calculations.
      - Enhanced autotuner configurations for forward pass, including new parameters for better performance tuning.
      - Refined scaling factor calculations for numerical stability in both forward and backward passes.
      - Improved comments and documentation for clarity and consistency across implementations.
      - Adjusted main function to reflect changes in parameter handling and ensure compatibility with new output requirements.
      
      * Refactor FlashAttention implementation in example_amd_flash_attn_bwd.py
      
      - Removed outdated comments and improved clarity in the code.
      - Enhanced the forward function to consistently return output and log-sum-exp (LSE) values.
      - Updated autotuner configurations to include new parameters for better performance tuning.
      - Refined tensor handling and scaling factor calculations for improved numerical stability.
      - Adjusted the main function to ensure compatibility with updated output requirements and parameter handling.
      
      * Enhance FlashAttention backward implementation in example_amd_flash_attn_bwd.py
      
      - Updated configuration parameters for backward calculations, including new options for block sizes, threads, and rasterization.
      - Added new parameters (k_pack, qk_coalesced_width, v_coalesced_width) to improve performance tuning and memory access patterns.
      - Modified tensor copy operations to utilize coalesced widths for optimized memory loads.
      - Enhanced GEMM operations with k_pack for improved computational efficiency.
      - Refined the configuration generation logic to accommodate the new parameters, ensuring comprehensive coverage for backward pass scenarios.
      
      * Refactor configuration and tensor operations in example_amd_flash_attn_bwd.py
      
      - Updated backward configuration parameters to include larger block sizes and a wider range of threads for enhanced performance tuning.
      - Removed unnecessary parameters (k_pack, qk_coalesced_width, v_coalesced_width) from function signatures and tensor operations to simplify the implementation.
      - Optimized tensor copy operations by eliminating coalesced width specifications, streamlining memory access patterns.
      - Adjusted GEMM operations to improve computational efficiency without the use of k_pack.
      
      * Enhance HIP code generation and FP8 type support
      
      - Added support for additional FP8 types (e4m3, e4m3b11fnuz, e5m2fnuz, e8m0) in codegen_hip.cc to improve compatibility.
      - Updated error logging to include unsupported FP8 type details for better debugging.
      - Implemented handling for loop break and no-op register management in HIP within VisitExpr_ method.
      - Introduced new FP8 vector types (e5 and e8) in hip_fp8.h for enhanced functionality.
      - Added overloads for AtomicAdd in common.h to support both pointer and value arguments.
      
      * Enhance FP8 type support and clarify accumulator handling in HIP
      
      - Expanded FP8 type support in codegen_hip.cc to include additional float8 formats.
      - Updated gemm.h to clarify the handling of the accumulator when clear_accum is true.
      - Added comments in hip_fp8.h to indicate that E8M0 types are not supported in the current HIP version.
      
      * Remove deprecated files and update print statements for clarity in example_amd_flash_attn_bwd.py
      
      * Update print statement formatting for clarity in example_amd_flash_attn_bwd.py
      
      * Remove redundant verification results summary print statement in example_amd_flash_attn_bwd.py for cleaner output.
      
      * Fix formatting inconsistencies in example_amd_flash_attn_bwd.py and example_amd_flash_attn_fwd.py by adding spaces for improved readability in configuration parameters and print statements.
      
      * Refactor and enhance HIP code generation for improved FP8 support
      
      - Reorganized and cleaned up code in codegen_hip.cc for better readability and maintainability.
      - Enhanced handling of FP8 types, including additional formats and improved error logging for unsupported types.
      - Updated AtomicAdd function in common.h to streamline its implementation.
      - Refined the PrintVecElemLoadExpr method to handle volatile loads more effectively.
      - Added function to manage the addition of new functions in the code generation process.
      
      * Fix formatting issue in HIP code generation for MFMA call
      
      - Adjusted the indentation of the MFMA call code block in codegen_hip.cc for improved readability and consistency.
      
      * Refactor HIP code generation and enhance FP8 type handling
      
      - Reintroduced necessary includes and reorganized code in codegen_hip.cc for improved structure and readability.
      - Enhanced the GetFP8Type function to support additional FP8 formats and improved error handling for unsupported types.
      - Updated PrintType and PrintVecElemLoadExpr methods to better manage type conversions and vector element loading.
      - Refined the AddFunction method to streamline function addition in the code generation process.
      
      * Remove unnecessary blank line in example_amd_flash_attn_bwd.py for improved code cleanliness.
      
      * Refactor backward attention implementation in example_amd_flash_attn_bwd.py
      
      - Updated the GEMM operation to use shared memory for improved performance.
      - Adjusted parallelization parameters to enhance efficiency in the backward pass.
      
      * Fix formatting by removing an unnecessary blank line in example_amd_flash_attn_bwd.py for improved code cleanliness.
      
      * Add additional test cases for `assert_tl_matmul_correctness` with `float8_e4m3fnuz` and various configurations
      
      * Refactor test case formatting for `assert_tl_matmul_correctness` in `test_tilelang_gemm_mfma_intrinsic.py`
      
      ---------
      Co-authored-by: default avatarxinxyxiao <xinyxiao@amd.com>
      Co-authored-by: default avatarLei Wang <34334180+LeiWang1999@users.noreply.github.com>
      Co-authored-by: default avatarLeiWang1999 <leiwang1999@outlook.com>
      80665cd1
  7. 10 Oct, 2025 1 commit
    • Tong WU's avatar
      [Example] Add support for `bfloat16` and user-defined `sm_scale` in attention sink examples (#924) · 7cd0da99
      Tong WU authored
      
      
      * revert split+sum template for MHA backward
      
      * lint
      
      * Update example_mha_bwd.py
      
      * Update example_mha_bwd_wgmma_pipelined.py
      
      * Refactor attention sink examples to support bf16 and user-defined softmax scale
      
      * fix typos
      
      * Adding compile flags for fast math optimizations and enabling BF16 support in both GQA and MHA backward implementations.
      
      * Update backward configuration for GQA and MHA examples to align with flash attention
      
      * Refactor GQA backward implementation to improve atomic add performance
      
      * Allow for slightly larger numerical error for bf16
      
      * upd readme to show bf16 benchmark results
      
      * lint
      
      * fix ci and lint
      
      * fix comments and lint
      
      * refactor atomic add
      
      ---------
      Co-authored-by: default avatarLei Wang <34334180+LeiWang1999@users.noreply.github.com>
      7cd0da99
  8. 04 Sep, 2025 1 commit
    • alex_xiao's avatar
      [AMD] Fix amd tir&add examples (#784) · f07f31c1
      alex_xiao authored
      
      
      * [Enhancement] Refactor buffer index handling for improved precision and clarity (#668)
      
      - Enhanced buffer index handling to address precision issues by removing redundant operations.
      - Streamlined the logic for determining buffer overlaps, ensuring more accurate conflict detection.
      - Updated related documentation to reflect changes in buffer management practices.
      
      * Remove obsolete test script for AMD example, streamlining the examples directory.
      
      * Remove unused dtype_size variable in AMD example script to streamline code.
      
      * Add input configuration file and update AMD example script for enhanced flexibility
      
      - Introduced a new input.txt file for configurable parameters.
      - Modified the example_amd_flash_attn_fwd.py script to allow for a wider range of configurations, including additional options for num_stages, enable_rasterization, and k_pack.
      - Streamlined the main function for better clarity and organization.
      - Added a new test script to facilitate running the example with specified parameters.
      
      * Remove input configuration file and obsolete test script; enhance AMD example with swizzle layout annotations
      
      - Deleted input.txt and test.sh files as they are no longer needed.
      - Updated example_amd_flash_attn_fwd.py to include swizzle layout annotations for shared memory, improving bank conflict avoidance.
      - Reintroduced swizzle usage in the kernel for better performance.
      
      * Refactor AMD example script for FlashAttention-2
      
      - Updated function names for clarity, changing `get_v2_configs` to `get_configs` and `fast_flashattn_v2` to `fast_flashattn`.
      - Streamlined the main function by renaming `main_v2` to `main` and adjusting the corresponding calls.
      - Removed outdated comments and improved code organization for better readability.
      
      * Refactor formatting in AMD FlashAttention example script
      
      - Improved code readability by adjusting line breaks and indentation in the `fast_flashattn` function.
      - Streamlined the `main` function parameter formatting for consistency.
      - Removed unnecessary blank lines to enhance overall code organization.
      
      * Update example_amd_flash_attn_fwd.py
      
      * Enhance AMD example script and update CI workflows
      
      - Improved the `example_amd_flash_attn_fwd.py` script for better clarity and organization.
      - Added new CI workflows for AMD and documentation publishing.
      - Updated various requirements files to include necessary dependencies.
      - Introduced new test cases and examples for better coverage and functionality.
      - Refactored existing code for improved readability and maintainability.
      
      * Remove redundant tool cache cleanup step in AMD CI workflow
      
      * Remove `torch` dependency from `requirements-rocm.txt` to streamline requirements.
      
      * Add new AMD FlashAttention example and test script
      
      - Introduced `example_amd_flash_attn_bwd.py` for backward attention computation using TileLang.
      - Added `test.sh` script to facilitate running the new example with specified parameters.
      - Enhanced the overall structure and organization of the example for better clarity and usability.
      
      * Update configurations in `example_amd_flash_attn_fwd.py` for autotuner
      
      - Reduced the number of threads and `num_split_q` options for improved performance.
      - Adjusted `panel_size` options to streamline configuration settings.
      
      * Update submodule 'tvm' to commit 6ccc74f622c7ec4ac25d430d0f6546e7b9edb217
      
      * Update submodule 'tvm' to commit 14ff70ab142b9e5a31bbf9c7923c8a697d41e86c
      
      * Add example for AMD Flash Attention backward pass implementation
      
      - Introduced a new example script `example_amd_flash_attn_bwd.py` demonstrating the forward and backward operations of Flash Attention using TileLang.
      - Implemented JIT-compiled functions for both forward and backward passes, including preprocessing and postprocessing steps.
      - Added a main function to facilitate testing and benchmarking of the attention mechanism with configurable parameters.
      - Included reference implementation for validation against PyTorch's attention mechanism.
      
      This addition enhances the examples directory by providing a comprehensive guide for users to understand and utilize Flash Attention in their applications.
      
      * Enhance AMD Flash Attention example with additional testing capabilities
      
      - Updated `example_amd_flash_attn_bwd.py` to include more comprehensive testing features for the Flash Attention implementation.
      - Improved the main function to allow for better parameter configuration and benchmarking.
      - Added validation checks against PyTorch's attention mechanism to ensure accuracy and reliability of the example.
      
      This update aims to provide users with a more robust tool for understanding and utilizing Flash Attention in their applications.
      
      * Update submodule TVM to commit a64a5926a6e59f5417ef2501f9d88b467337cf6a
      
      * Refactor HIP intrinsic rules to CUDA
      
      - Updated file name from `intrin_rule_hip.cc` to `intrin_rule_cuda.cc` to reflect the change in focus from HIP to CUDA intrinsic rules.
      - Adjusted include paths for better organization and clarity in the code structure.
      
      * Update AMD CI workflow to uninstall specific PyTorch packages before installation
      
      - Removed the installation of `flash_attn==2.5.8` to streamline the CI process.
      - Added a step to uninstall `torch`, `torchvision`, and `torchaudio` prior to installing pre-release versions, ensuring compatibility and reducing potential conflicts.
      
      * Remove unused shared memory allocations in AMD Flash Attention backward example
      
      - Eliminated the allocation of shared memory for `dv_shared` and `dk_shared` in `example_amd_flash_attn_bwd.py` to streamline memory usage and improve performance.
      - This change focuses on optimizing the backward pass implementation by reducing unnecessary memory overhead.
      
      * Remove unnecessary pip uninstall command from AMD CI workflow
      
      - Eliminated the step to uninstall `torch`, `torchvision`, and `torchaudio` in the AMD CI workflow, as it is no longer required for the installation of pre-release versions.
      - This change simplifies the CI process and reduces potential overhead during package management.
      
      * Refactor DispatchHIPWarpActiveMask function in HIP intrinsic rules
      
      - Updated the return statement to use std::string for concatenation in the case of 16-bit types, improving code clarity.
      - Added a null check for the CallNode pointer in DispatchHIPWarpActiveMask to enhance robustness and prevent potential dereferencing issues.
      
      * Refactor formatting of HIP intrinsic rule registrations
      
      - Adjusted the formatting of TVM_REGISTER_OP calls for better readability by aligning method chaining.
      - No functional changes were made; this update focuses on code style improvements to enhance maintainability.
      
      * Update file name and documentation for HIP intrinsic rules
      
      - Renamed the file from `intrin_rule_cuda.cc` to `intrin_rule_hip.cc` to accurately reflect the focus on HIP intrinsic rules.
      - Updated the file documentation to clarify its purpose as related to HIP rather than CUDA.
      
      * Enhance DispatchHIPShuffle function with clang-analyzer comments
      
      - Added NOLINTBEGIN and NOLINTEND comments to the DispatchHIPShuffle function to suppress clang-analyzer warnings related to inner pointer usage.
      - This change improves code clarity and maintains compliance with static analysis tools.
      
      * lint fix
      
      * fix
      
      ---------
      Co-authored-by: default avatarxinxyxiao <xinyxiao@amd.com>
      Co-authored-by: default avatarLei Wang <34334180+LeiWang1999@users.noreply.github.com>
      Co-authored-by: default avatarLeiWang1999 <leiwang1999@outlook.com>
      f07f31c1
  9. 15 Aug, 2025 1 commit
    • alex_xiao's avatar
      [CI][AMD] Add AMD GPU CI and fix some related bugs (#694) · 8e1b88f3
      alex_xiao authored
      
      
      * [Enhancement] Refactor buffer index handling for improved precision and clarity (#668)
      
      - Enhanced buffer index handling to address precision issues by removing redundant operations.
      - Streamlined the logic for determining buffer overlaps, ensuring more accurate conflict detection.
      - Updated related documentation to reflect changes in buffer management practices.
      
      * Remove obsolete test script for AMD example, streamlining the examples directory.
      
      * Remove unused dtype_size variable in AMD example script to streamline code.
      
      * Add input configuration file and update AMD example script for enhanced flexibility
      
      - Introduced a new input.txt file for configurable parameters.
      - Modified the example_amd_flash_attn_fwd.py script to allow for a wider range of configurations, including additional options for num_stages, enable_rasterization, and k_pack.
      - Streamlined the main function for better clarity and organization.
      - Added a new test script to facilitate running the example with specified parameters.
      
      * Remove input configuration file and obsolete test script; enhance AMD example with swizzle layout annotations
      
      - Deleted input.txt and test.sh files as they are no longer needed.
      - Updated example_amd_flash_attn_fwd.py to include swizzle layout annotations for shared memory, improving bank conflict avoidance.
      - Reintroduced swizzle usage in the kernel for better performance.
      
      * Refactor AMD example script for FlashAttention-2
      
      - Updated function names for clarity, changing `get_v2_configs` to `get_configs` and `fast_flashattn_v2` to `fast_flashattn`.
      - Streamlined the main function by renaming `main_v2` to `main` and adjusting the corresponding calls.
      - Removed outdated comments and improved code organization for better readability.
      
      * Refactor formatting in AMD FlashAttention example script
      
      - Improved code readability by adjusting line breaks and indentation in the `fast_flashattn` function.
      - Streamlined the `main` function parameter formatting for consistency.
      - Removed unnecessary blank lines to enhance overall code organization.
      
      * Update example_amd_flash_attn_fwd.py
      
      * Update AMD FlashAttention example and TVM submodule
      
      - Added a new example script `example_amd_flash_attn_fwd_k_block.py` for FlashAttention with K-blocking support.
      - Enhanced `example_amd_flash_attn_fwd.py` by expanding configuration options for block sizes and threads.
      - Updated the TVM submodule to the latest commit for improved functionality.
      - Introduced a new test script `test.sh` to facilitate running the new example with specified parameters.
      
      * Add CI workflow for automated format checking and testing
      
      - Introduced a new GitHub Actions workflow in `amd_ci.yml` to automate format checks and testing for pull requests.
      - The workflow includes steps for setting up a Python environment, running format checks, and executing tests.
      - Removed obsolete example script `example_amd_flash_attn_fwd_k_block.py` and test script `test.sh` to streamline the examples directory.
      
      * Rename CI workflow from "CI" to "AMD CI" for clarity and specificity.
      
      * Update AMD CI workflow to include copying PyTorch, TorchVision, and Torchaudio packages to the virtual environment for improved dependency management.
      
      * Update AMD CI workflow to install pytest directly instead of using requirements-test.txt
      
      * Update AMD CI workflow to remove 'flash-attn' from requirements and install dependencies from requirements-test.txt
      
      * Refactor AMD CI workflow to enhance clarity in removing 'flash-attn' from requirements-test.txt before installation
      
      * Remove Torchaudio package copying from AMD CI workflow to streamline dependency management.
      
      * Refactor AMD CI workflow to remove the format-check job and streamline the build-test process by directly copying PyTorch and TorchVision packages to the virtual environment.
      
      * Add installation of ROCm in AMD CI workflow
      
      - Included a step to execute the `install_rocm.sh` script for improved setup.
      - Removed unnecessary blank line for better readability in the workflow script.
      
      * Remove installation step for ROCm in AMD CI workflow to simplify the setup process.
      
      * Update AMD CI workflow to run specific test file with verbose output instead of all tests.
      
      * Add new tilelang built-in operations for AMD architecture
      
      - Introduced `tvm_mfma`, `tvm_mfma_store`, `tvm_rdna_wmma`, and `tvm_rdna_wmma_store` built-in operations to enhance support for matrix multiplication and storage in tilelang.
      - Each operation is configured with the appropriate number of inputs and marked as opaque in terms of call effects.
      
      * Enhance autotuner configurations and GEMM operations in AMD example
      
      - Updated block sizes and num_split_q parameters in `get_configs` for improved autotuning.
      - Modified `T.gemm` calls in `fast_flashattn` to utilize `GemmWarpPolicy.FullRow`, optimizing performance for matrix multiplications.
      
      * Update autotuner configurations in AMD example for enhanced performance
      
      - Refined block sizes, thread counts, and added new parameters in `get_configs` to optimize autotuning.
      - Adjusted `fast_flashattn` function to incorporate new parameters for panel size and coalesced widths, improving memory access patterns.
      
      * Enhance autotuner configurations and memory handling in AMD example
      
      - Expanded block sizes and thread counts in `get_configs` for improved autotuning capabilities.
      - Updated `fast_flashattn` to utilize a new shared memory allocation strategy, optimizing memory access patterns during GEMM operations.
      
      * Refine autotuner configurations and memory usage in AMD example
      
      - Reduced block sizes and adjusted thread counts in `get_configs` for optimized autotuning.
      - Updated `fast_flashattn` to utilize register fragments for accumulation, minimizing LDS usage and enhancing performance during GEMM operations.
      
      * Update autotuner configurations in AMD example for enhanced performance
      
      - Expanded block sizes and thread counts in `get_configs` to improve autotuning capabilities.
      - Adjusted `num_split_q` and `v_coalesced_width` parameters for better optimization during GEMM operations.
      
      * Enhance autotuner configurations and GEMM operations in AMD example
      
      - Expanded thread counts in `get_configs` to include higher values for improved autotuning.
      - Updated `fast_flashattn` to adjust accumulation logic and ensure proper handling of causal conditions, optimizing performance during matrix multiplications.
      
      * Update AMD CI workflow and remove obsolete test script
      
      - Modified the CI workflow to run on multiple environments: self-hosted, amd, and gpu.
      - Deleted the outdated `test.sh` script from the examples directory, streamlining the project structure.
      
      * Remove TVM subproject from 3rdparty directory
      
      * Refactor configuration generation and accumulation logic in AMD example
      
      - Reformatted the `get_configs` function for improved readability by aligning parameters.
      - Adjusted the `fast_flashattn` function to enhance clarity in the conditional logic for accumulation, ensuring better handling of causal conditions.
      
      * Enhance AMD CI workflow with additional logging and setup steps
      
      - Added echo statements to provide feedback during the CI process, indicating when the environment is running on an AMD GPU, copying necessary packages, and installing requirements.
      - Improved clarity in the workflow by explicitly stating when the project is being installed and when tests are being executed.
      
      * Comment out package copying in AMD CI workflow to prevent potential issues during environment setup
      
      * Update AMD CI workflow to install nightly versions of PyTorch and remove obsolete package copying steps
      
      * Enhance BuildTileLangHIP function by adding whitespace for improved readability
      
      * Refactor kTVMGridConstant definition for clarity and remove unnecessary comment
      
      * Update TVM subproject to latest commit a64a5926a6e59f5417ef2501f9d88b467337cf6a
      
      * lint fix
      
      * Update AMD CI workflow to use requirements-rocm.txt for dependency installation
      
      * fix ci
      
      * Remove dependency on format-check from AMD CI workflow
      
      * fix ci
      
      * fix ci
      
      * fix ci
      
      * Remove format-check job from AMD CI workflow
      
      * Add torch to requirements-rocm.txt and remove explicit pip install commands from AMD CI workflow
      
      * Add dependency on format-check job in AMD CI workflow
      
      * Add format-check job to AMD CI workflow
      
      * Update format-check job in AMD CI workflow to run on self-hosted environment
      
      * Enhance format-check job in AMD CI workflow with improved Python environment setup and automatic commit of lint changes
      
      * Update amd_ci.yml
      
      ---------
      Co-authored-by: default avatarxinxyxiao <xinyxiao@amd.com>
      Co-authored-by: default avatarLei Wang <34334180+LeiWang1999@users.noreply.github.com>
      Co-authored-by: default avatarLeiWang1999 <leiwang1999@outlook.com>
      8e1b88f3
  10. 31 Jul, 2025 1 commit
    • alex_xiao's avatar
      Add Flash Attn example on amd mi300 series (#682) · adcba275
      alex_xiao authored
      
      
      * [Enhancement] Refactor buffer index handling for improved precision and clarity (#668)
      
      - Enhanced buffer index handling to address precision issues by removing redundant operations.
      - Streamlined the logic for determining buffer overlaps, ensuring more accurate conflict detection.
      - Updated related documentation to reflect changes in buffer management practices.
      
      * Remove obsolete test script for AMD example, streamlining the examples directory.
      
      * Remove unused dtype_size variable in AMD example script to streamline code.
      
      * Add input configuration file and update AMD example script for enhanced flexibility
      
      - Introduced a new input.txt file for configurable parameters.
      - Modified the example_amd_flash_attn_fwd.py script to allow for a wider range of configurations, including additional options for num_stages, enable_rasterization, and k_pack.
      - Streamlined the main function for better clarity and organization.
      - Added a new test script to facilitate running the example with specified parameters.
      
      * Remove input configuration file and obsolete test script; enhance AMD example with swizzle layout annotations
      
      - Deleted input.txt and test.sh files as they are no longer needed.
      - Updated example_amd_flash_attn_fwd.py to include swizzle layout annotations for shared memory, improving bank conflict avoidance.
      - Reintroduced swizzle usage in the kernel for better performance.
      
      * Refactor AMD example script for FlashAttention-2
      
      - Updated function names for clarity, changing `get_v2_configs` to `get_configs` and `fast_flashattn_v2` to `fast_flashattn`.
      - Streamlined the main function by renaming `main_v2` to `main` and adjusting the corresponding calls.
      - Removed outdated comments and improved code organization for better readability.
      
      * Refactor formatting in AMD FlashAttention example script
      
      - Improved code readability by adjusting line breaks and indentation in the `fast_flashattn` function.
      - Streamlined the `main` function parameter formatting for consistency.
      - Removed unnecessary blank lines to enhance overall code organization.
      
      * Update example_amd_flash_attn_fwd.py
      
      ---------
      Co-authored-by: default avatarxinxyxiao <xinyxiao@amd.com>
      Co-authored-by: default avatarLei Wang <34334180+LeiWang1999@users.noreply.github.com>
      adcba275
  11. 29 Jul, 2025 2 commits