"maint/scripts/local_distribution.sh" did not exist on "64f17c2f369e612cc297d358f607307a615bbb59"
- 28 Oct, 2025 1 commit
-
-
Tong WU authored
[BugFix] Implement bfloat16 support in CUDA code generation with min/max functions and inf/nan values (#1143) * Implement bfloat16 support in CUDA code generation with min/max functions and inf/nan values * refactor * fix prev typo * bugfix * lint * bugfix
-
- 27 Oct, 2025 4 commits
-
-
Lei Wang authored
* atomic_fix * atomic_fix
-
LJC00118 authored
* Remove an incorrect check * add fp8 pack function * code lint * minor fix * minor fix * minor fix * Minor fix * Minor fix * add pack function * code lint * code lint
-
Yuqi Dong authored
* update * update
-
Yu Cheng authored
* [Enhancement] Add missing primitive after mbarrier init * lint
-
- 25 Oct, 2025 1 commit
-
-
Zhengju Tang authored
* [Feature] Add memory_order PTX for vectorized (2x) atomic add * [Feature] Add memory_order PTX for all vectorized atomic add * [Lint] * test * [BugFix] FIx init optional argument in alloc_var * bug fix * bug fix * lint fix * lint fix --------- Co-authored-by:Lei Wang <34334180+LeiWang1999@users.noreply.github.com>
-
- 24 Oct, 2025 1 commit
-
-
Lei Wang authored
* fix int32 dtype issue * lint fix * lint * lint fix --------- Co-authored-by:Zhiwen Mo <zm125@ic.ac.uk>
-
- 23 Oct, 2025 2 commits
-
-
Tong WU authored
* [Feature] Add vectorized float16 and float32 conversion support in CUDA codegen * Implemented handling for conversions between float16 and float32 types, specifically for vectorized operations using __half22float2 and __float22half2_rn. * Enhanced the existing code to support both directions of conversion based on the lane count. * Improved overall type handling in the VisitExpr_ method for better compatibility with TileLang. * [Feature] Add float32 to float8 conversion support in CUDA codegen * Implemented handling for conversion from float32 to float8 (E4M3/E5M2) in the VisitExpr_ method. * Added vectorized conversion support using __nv_cvt_float2_to_fp8x2 for float2 to fp8x2 transformations. * Enhanced type handling for better compatibility with TileLang, particularly for float8 types. * lint * fix a bug * [Enhancement] Support lanes=4 cases and add unit test for vectorized cast * lint * [Feature] Refactor bf16 convertion operations and remove legacy compile flags * lint
-
Lei Wang authored
* [Refactor] Improve scalar handling in CopyNode and update loop partition dtype logic * Refactored CopyNode::MakeSIMTLoop to handle scalar cases more efficiently by moving the scalar check to the end of the function. * Updated loop_partition.cc to set a default DataType for thread and vector extents, ensuring compatibility when loop_vars_ is empty. * lint fix * remove debug print
-
- 22 Oct, 2025 3 commits
-
-
Yu Cheng authored
-
Xuehai Pan authored
* [Lint] Retire `format.sh` and add `clang-tidy` to GHA workflow * chore: update clang-tidy settings * chore: upgrade clang-format and clang-tidy version * lint: resolve clang-tidy errors * [Maint] restore format.sh * [CI] pre-commit autoupdate * [Minor] fix `command -v` usage
-
Lei Wang authored
-
- 21 Oct, 2025 4 commits
-
-
Yu Cheng authored
-
Lei Wang authored
* - carry existing local-var initializer map into OpaqueBlockLower, reattach it to generated Allocates and the PrimFunc attrs - thread the map through FlattenBuffer and StorageRewrite so flattened/merged allocations keep their tl.local_var_init annotations - teach annotation handling to accept scalar initializers, resolve buffers, and merge with existing stat * lint fix * enhance * lint fix * lint fix -
Lei Wang authored
* • Enable configurable StorageRewrite inplace detection - Add kStorageRewriteDetectInplace constant and register the flag with PassContext so C++ code no longer hard-codes the key. - Wire StorageRewrite to include TileLang builtin constants and honor the new config toggle when deciding inplace reuse. - Document the flag across Python surfaces (PassConfigKey, JIT/autotuner docs) with usage guidance and simplified IR examples. * lint fix * add test * lint fix
-
Zhengju Tang authored
* [BugFix] Add memory order argument for non-vectorized atomic add * [Lint] * [BugFix] Memory order * [Lint] * [BugFix] Argument in cuda template * [Lint]
-
- 20 Oct, 2025 6 commits
-
-
Tong WU authored
* [Enhancement] Update async intrinsic handling in inject_fence_proxy * Added support for wgmma async intrinsics in IsAsyncIntrinsic function. * Changed handling of unknown externs to treat them as Generic instead of Async, improving accuracy in proxy kind determination. * test fix * Update testing/python/transform/test_tilelang_transform_inject_fence_proxy.py Co-authored-by:
coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com> --------- Co-authored-by:
LeiWang1999 <leiwang1999@outlook.com> Co-authored-by:
coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
-
Yu Cheng authored
-
Lei Wang authored
* Support reduce ss * lint fix * test fix * lint fix
-
Zhengju Tang authored
* [Feature] Support Reduce operators for bitwise and/or/xor * [Lint]
-
Lei Wang authored
-
Lei Wang authored
* Allow dynamic extents in loop partition; warn when layout inversion falls back to NoCheck * add test and introduce predicate * test fix * fix * enhance * inverse with level * test fix * bug fix
-
- 17 Oct, 2025 2 commits
-
-
Chaofan Lin authored
* [Refactor] Refactor Pass to support recursive load/store rewrite * lint * recursive collect conds for call_extern * fix name * [Lint]: [pre-commit.ci] auto fixes [...] * lint * [Lint]: [pre-commit.ci] auto fixes [...] * lint * [Lint]: [pre-commit.ci] auto fixes [...] * address comment * rename pad_value to safe_value * lint * add oob store test * [Lint]: [pre-commit.ci] auto fixes [...] * fix * fix --------- Co-authored-by:pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
-
Lei Wang authored
* [Enhancement] Improve layout inference for local buffer handling in parallel operations * Added logic to check if a loop only manipulates "local" buffers, which affects thread binding decisions. * Updated the condition for determining parallel loop execution to account for local buffer stores. * Cleaned up comments for clarity and future considerations. * [Refactor] Clean up parallel loop condition formatting in layout inference * Reformatted the condition for determining parallel loop execution for better readability. * Maintained existing logic while enhancing code clarity for future modifications. --------- Co-authored-by:Zhiwen Mo <zm125@ic.ac.uk>
-
- 16 Oct, 2025 2 commits
-
-
Yichen Yan authored
-
Yuqi Dong authored
* update * format * rabbit
-
- 15 Oct, 2025 5 commits
-
-
Yu Cheng authored
-
alex_xiao authored
* [Enhancement] Refactor buffer index handling for improved precision and clarity (#668) - Enhanced buffer index handling to address precision issues by removing redundant operations. - Streamlined the logic for determining buffer overlaps, ensuring more accurate conflict detection. - Updated related documentation to reflect changes in buffer management practices. * Remove obsolete test script for AMD example, streamlining the examples directory. * Remove unused dtype_size variable in AMD example script to streamline code. * Add input configuration file and update AMD example script for enhanced flexibility - Introduced a new input.txt file for configurable parameters. - Modified the example_amd_flash_attn_fwd.py script to allow for a wider range of configurations, including additional options for num_stages, enable_rasterization, and k_pack. - Streamlined the main function for better clarity and organization. - Added a new test script to facilitate running the example with specified parameters. * Remove input configuration file and obsolete test script; enhance AMD example with swizzle layout annotations - Deleted input.txt and test.sh files as they are no longer needed. - Updated example_amd_flash_attn_fwd.py to include swizzle layout annotations for shared memory, improving bank conflict avoidance. - Reintroduced swizzle usage in the kernel for better performance. * Refactor AMD example script for FlashAttention-2 - Updated function names for clarity, changing `get_v2_configs` to `get_configs` and `fast_flashattn_v2` to `fast_flashattn`. - Streamlined the main function by renaming `main_v2` to `main` and adjusting the corresponding calls. - Removed outdated comments and improved code organization for better readability. * Refactor formatting in AMD FlashAttention example script - Improved code readability by adjusting line breaks and indentation in the `fast_flashattn` function. - Streamlined the `main` function parameter formatting for consistency. - Removed unnecessary blank lines to enhance overall code organization. * Update example_amd_flash_attn_fwd.py * Enhance AMD example script and update CI workflows - Improved the `example_amd_flash_attn_fwd.py` script for better clarity and organization. - Added new CI workflows for AMD and documentation publishing. - Updated various requirements files to include necessary dependencies. - Introduced new test cases and examples for better coverage and functionality. - Refactored existing code for improved readability and maintainability. * Remove redundant tool cache cleanup step in AMD CI workflow * Remove `torch` dependency from `requirements-rocm.txt` to streamline requirements. * Add new AMD FlashAttention example and test script - Introduced `example_amd_flash_attn_bwd.py` for backward attention computation using TileLang. - Added `test.sh` script to facilitate running the new example with specified parameters. - Enhanced the overall structure and organization of the example for better clarity and usability. * Update configurations in `example_amd_flash_attn_fwd.py` for autotuner - Reduced the number of threads and `num_split_q` options for improved performance. - Adjusted `panel_size` options to streamline configuration settings. * Update submodule 'tvm' to commit 6ccc74f622c7ec4ac25d430d0f6546e7b9edb217 * Update submodule 'tvm' to commit 14ff70ab142b9e5a31bbf9c7923c8a697d41e86c * Add example for AMD Flash Attention backward pass implementation - Introduced a new example script `example_amd_flash_attn_bwd.py` demonstrating the forward and backward operations of Flash Attention using TileLang. - Implemented JIT-compiled functions for both forward and backward passes, including preprocessing and postprocessing steps. - Added a main function to facilitate testing and benchmarking of the attention mechanism with configurable parameters. - Included reference implementation for validation against PyTorch's attention mechanism. This addition enhances the examples directory by providing a comprehensive guide for users to understand and utilize Flash Attention in their applications. * Enhance AMD Flash Attention example with additional testing capabilities - Updated `example_amd_flash_attn_bwd.py` to include more comprehensive testing features for the Flash Attention implementation. - Improved the main function to allow for better parameter configuration and benchmarking. - Added validation checks against PyTorch's attention mechanism to ensure accuracy and reliability of the example. This update aims to provide users with a more robust tool for understanding and utilizing Flash Attention in their applications. * Update submodule TVM to commit a64a5926a6e59f5417ef2501f9d88b467337cf6a * Refactor HIP intrinsic rules to CUDA - Updated file name from `intrin_rule_hip.cc` to `intrin_rule_cuda.cc` to reflect the change in focus from HIP to CUDA intrinsic rules. - Adjusted include paths for better organization and clarity in the code structure. * Update AMD CI workflow to uninstall specific PyTorch packages before installation - Removed the installation of `flash_attn==2.5.8` to streamline the CI process. - Added a step to uninstall `torch`, `torchvision`, and `torchaudio` prior to installing pre-release versions, ensuring compatibility and reducing potential conflicts. * Remove unused shared memory allocations in AMD Flash Attention backward example - Eliminated the allocation of shared memory for `dv_shared` and `dk_shared` in `example_amd_flash_attn_bwd.py` to streamline memory usage and improve performance. - This change focuses on optimizing the backward pass implementation by reducing unnecessary memory overhead. * Remove unnecessary pip uninstall command from AMD CI workflow - Eliminated the step to uninstall `torch`, `torchvision`, and `torchaudio` in the AMD CI workflow, as it is no longer required for the installation of pre-release versions. - This change simplifies the CI process and reduces potential overhead during package management. * Refactor DispatchHIPWarpActiveMask function in HIP intrinsic rules - Updated the return statement to use std::string for concatenation in the case of 16-bit types, improving code clarity. - Added a null check for the CallNode pointer in DispatchHIPWarpActiveMask to enhance robustness and prevent potential dereferencing issues. * Refactor formatting of HIP intrinsic rule registrations - Adjusted the formatting of TVM_REGISTER_OP calls for better readability by aligning method chaining. - No functional changes were made; this update focuses on code style improvements to enhance maintainability. * Update file name and documentation for HIP intrinsic rules - Renamed the file from `intrin_rule_cuda.cc` to `intrin_rule_hip.cc` to accurately reflect the focus on HIP intrinsic rules. - Updated the file documentation to clarify its purpose as related to HIP rather than CUDA. * Enhance DispatchHIPShuffle function with clang-analyzer comments - Added NOLINTBEGIN and NOLINTEND comments to the DispatchHIPShuffle function to suppress clang-analyzer warnings related to inner pointer usage. - This change improves code clarity and maintains compliance with static analysis tools. * lint fix * fix * Enhance autotuner configurations in example_amd_flash_attn_fwd.py by adding new block sizes, stages, and panel sizes. Update test script to use relative Python path and adjust parameters for consistency. * Add backward attention example to test script - Extended the test.sh script to include a new backward attention example using example_amd_flash_attn_bwd.py. - Added parameters for batch size, context length, and head dimensions to ensure consistency with the forward example. - Updated the command for the backward tile example to match the new configuration. * Refactor FlashAttention implementation in example_amd_flash_attn_bwd.py and example_amd_flash_attn_fwd.py - Introduced new functions for forward and backward configurations to enhance autotuning capabilities. - Updated the FlashAttention forward and backward functions to improve performance and maintainability. - Adjusted test script parameters for consistency and clarity, including the addition of group handling. - Enhanced the autotuner configurations by refining block sizes and stages for better performance tuning. - Updated the main function to reflect changes in parameter names and types for better usability. * Enhance FlashAttention backward implementation in example_amd_flash_attn_bwd.py - Updated the backward function to return additional outputs, including log-sum-exp (LSE) values for improved gradient calculations. - Refined autotuner configurations by adding new block sizes and adjusting parameters for better performance tuning. - Improved shared memory usage in the backward pass to optimize memory access patterns and enhance computational efficiency. - Updated the main function to reflect changes in parameter handling and ensure consistency with the forward pass. - Enhanced correctness checks in the main function to include LSE validation alongside gradient checks. * Enhance FlashAttention backward implementation in example_amd_flash_attn_bwd.py - Introduced a scaling factor for improved numerical stability in gradient calculations. - Optimized shared memory usage by adding new shared buffers for intermediate calculations. - Refined the handling of tensor fragments to improve performance and maintainability. - Updated the main function to ensure compatibility with the new output parameters for backward operations. - Removed unnecessary parameters from the test script to streamline execution. * Refactor FlashAttention implementation in example_amd_flash_attn_bwd.py and example_mha_bwd.py - Updated the forward and backward functions to improve numerical stability and performance. - Enhanced shared memory usage by optimizing buffer allocations and reducing unnecessary parameters. - Adjusted autotuner configurations for better performance tuning and compatibility with new output parameters. - Added debugging and benchmarking functions for improved correctness verification and performance analysis. - Updated the main function to reflect changes in parameter handling and ensure consistency across examples. * Enhance FlashAttention backward implementation in example_amd_flash_attn_bwd.py - Updated scaling factor application for improved numerical stability in gradient calculations. - Refined tensor handling to ensure consistency with forward pass operations. - Optimized atomic operations for writing gradients to dK and dV using fp32 for better precision. - Adjusted comments for clarity and alignment with standard implementation practices. * Expand autotuner configurations in example_amd_flash_attn_bwd.py and update test.sh - Increased the range of block sizes and stages for forward and backward configurations to enhance performance tuning. - Adjusted the test script to include additional parameters for batch size and head dimensions, ensuring consistency with the forward example. - Improved comments for clarity and alignment with the updated configurations. * Enhance performance calculations and benchmarking in example_amd_flash_attn_bwd.py - Updated FLOPs calculation to account for both forward and backward passes, clarifying the total computational cost. - Modified benchmarking functions to evaluate the complete forward and backward performance of both reference and Tile-lang implementations. - Improved comments for better understanding of the performance metrics and implementation details. - Removed unnecessary parameter from test.sh to streamline execution. * Remove forward attention test commands from test.sh and retain backward attention execution for streamlined testing. * Refactor FlashAttention forward and backward implementations in example_amd_flash_attn_bwd.py and example_amd_flash_attn_fwd.py - Updated the forward function to return both output and log-sum-exp (LSE) values for improved gradient calculations. - Enhanced autotuner configurations for forward pass, including new parameters for better performance tuning. - Refined scaling factor calculations for numerical stability in both forward and backward passes. - Improved comments and documentation for clarity and consistency across implementations. - Adjusted main function to reflect changes in parameter handling and ensure compatibility with new output requirements. * Refactor FlashAttention implementation in example_amd_flash_attn_bwd.py - Removed outdated comments and improved clarity in the code. - Enhanced the forward function to consistently return output and log-sum-exp (LSE) values. - Updated autotuner configurations to include new parameters for better performance tuning. - Refined tensor handling and scaling factor calculations for improved numerical stability. - Adjusted the main function to ensure compatibility with updated output requirements and parameter handling. * Enhance FlashAttention backward implementation in example_amd_flash_attn_bwd.py - Updated configuration parameters for backward calculations, including new options for block sizes, threads, and rasterization. - Added new parameters (k_pack, qk_coalesced_width, v_coalesced_width) to improve performance tuning and memory access patterns. - Modified tensor copy operations to utilize coalesced widths for optimized memory loads. - Enhanced GEMM operations with k_pack for improved computational efficiency. - Refined the configuration generation logic to accommodate the new parameters, ensuring comprehensive coverage for backward pass scenarios. * Refactor configuration and tensor operations in example_amd_flash_attn_bwd.py - Updated backward configuration parameters to include larger block sizes and a wider range of threads for enhanced performance tuning. - Removed unnecessary parameters (k_pack, qk_coalesced_width, v_coalesced_width) from function signatures and tensor operations to simplify the implementation. - Optimized tensor copy operations by eliminating coalesced width specifications, streamlining memory access patterns. - Adjusted GEMM operations to improve computational efficiency without the use of k_pack. * Enhance HIP code generation and FP8 type support - Added support for additional FP8 types (e4m3, e4m3b11fnuz, e5m2fnuz, e8m0) in codegen_hip.cc to improve compatibility. - Updated error logging to include unsupported FP8 type details for better debugging. - Implemented handling for loop break and no-op register management in HIP within VisitExpr_ method. - Introduced new FP8 vector types (e5 and e8) in hip_fp8.h for enhanced functionality. - Added overloads for AtomicAdd in common.h to support both pointer and value arguments. * Enhance FP8 type support and clarify accumulator handling in HIP - Expanded FP8 type support in codegen_hip.cc to include additional float8 formats. - Updated gemm.h to clarify the handling of the accumulator when clear_accum is true. - Added comments in hip_fp8.h to indicate that E8M0 types are not supported in the current HIP version. * Remove deprecated files and update print statements for clarity in example_amd_flash_attn_bwd.py * Update print statement formatting for clarity in example_amd_flash_attn_bwd.py * Remove redundant verification results summary print statement in example_amd_flash_attn_bwd.py for cleaner output. * Fix formatting inconsistencies in example_amd_flash_attn_bwd.py and example_amd_flash_attn_fwd.py by adding spaces for improved readability in configuration parameters and print statements. * Refactor and enhance HIP code generation for improved FP8 support - Reorganized and cleaned up code in codegen_hip.cc for better readability and maintainability. - Enhanced handling of FP8 types, including additional formats and improved error logging for unsupported types. - Updated AtomicAdd function in common.h to streamline its implementation. - Refined the PrintVecElemLoadExpr method to handle volatile loads more effectively. - Added function to manage the addition of new functions in the code generation process. * Fix formatting issue in HIP code generation for MFMA call - Adjusted the indentation of the MFMA call code block in codegen_hip.cc for improved readability and consistency. * Refactor HIP code generation and enhance FP8 type handling - Reintroduced necessary includes and reorganized code in codegen_hip.cc for improved structure and readability. - Enhanced the GetFP8Type function to support additional FP8 formats and improved error handling for unsupported types. - Updated PrintType and PrintVecElemLoadExpr methods to better manage type conversions and vector element loading. - Refined the AddFunction method to streamline function addition in the code generation process. * Remove unnecessary blank line in example_amd_flash_attn_bwd.py for improved code cleanliness. * Refactor backward attention implementation in example_amd_flash_attn_bwd.py - Updated the GEMM operation to use shared memory for improved performance. - Adjusted parallelization parameters to enhance efficiency in the backward pass. * Fix formatting by removing an unnecessary blank line in example_amd_flash_attn_bwd.py for improved code cleanliness. * Add additional test cases for `assert_tl_matmul_correctness` with `float8_e4m3fnuz` and various configurations * Refactor test case formatting for `assert_tl_matmul_correctness` in `test_tilelang_gemm_mfma_intrinsic.py` --------- Co-authored-by:
xinxyxiao <xinyxiao@amd.com> Co-authored-by:
Lei Wang <34334180+LeiWang1999@users.noreply.github.com> Co-authored-by:
LeiWang1999 <leiwang1999@outlook.com>
-
Lei Wang authored
* Expose CUDA warp/lane intrinsics in TileLang frontend * generalize warp indexing intrinsics and add coverage * [Lint]: [pre-commit.ci] auto fixes [...] --------- Co-authored-by:pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
-
LJC00118 authored
* Remove an incorrect check * add fp8 pack function * code lint * minor fix * minor fix * minor fix * Minor fix * Minor fix
-
Lei Wang authored
* keep >> instead of / * re think replicate * lint fix * handle const int buffers * rep fix --------- Co-authored-by:Zhiwen Mo <zm125@ic.ac.uk>
-
- 14 Oct, 2025 3 commits
-
-
Lei Wang authored
* recover flex parallel process * lint fix --------- Co-authored-by:Zhiwen Mo <zm125@ic.ac.uk>
-
Tong WU authored
* [Enhancement] Update abs function for half_t and bfloat_t to use cutlass implementation * [Lint]: [pre-commit.ci] auto fixes [...] * optimize amd ci --------- Co-authored-by:
pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by:
LeiWang1999 <leiwang1999@outlook.com>
-
Lei Wang authored
* Donot lower ceildiv to >> * lint fix * test fix * fallback ceildiv changes
-
- 13 Oct, 2025 1 commit
-
-
Yuqi Dong authored
* update * update * update * update
-
- 11 Oct, 2025 3 commits
-
-
Yu Cheng authored
* [Feature][Example] Support TMA reduce operation and update GQA bwd example * move GQA bwd with TMA reduce to new example * [Lint]: [pre-commit.ci] auto fixes [...] --------- Co-authored-by:pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
-
Lei Wang authored
[Refactor] Refactor Pass `InjectFenceProxy` and expose some warp group primitives in frontend (#977) * • InjectFenceProxy docs and tests - annotate proxy fence injector with context comments for async/generic detection - add compiler internals doc covering the pass mechanics and link it in docs index - repair fence proxy test by fixing descriptor init usage and fence counter logic * do not consider call_extern as async. * doc update. * reduce test size for sparse mla
-
Lei Wang authored
* support cumsum-1d * cumsum 1d support
-
- 10 Oct, 2025 2 commits
-
-
Chaofan Lin authored
* [Bugfix] Fix visit EvaluateNode in BufferGemmCollector * address comment * lint * fix * Add TileLang SplitHostDevice pass and tighten issue 830 test names * lint fix * enhance for kernel value unpacking. --------- Co-authored-by:LeiWang1999 <leiwang1999@outlook.com>
-
Xuehai Pan authored
* chore: misc cleanup * feat: add pre-commit config * chore: update lint dependencies * style: fix lint issues * feat: add pre-commit hooks * fix: fix typos * chore: update .gitattributes * [Lint]: [pre-commit.ci] auto fixes [...] * docs: update CONTRIBUTING.md * chore: update default venv name * chore: revert and exclude CUDA files --------- Co-authored-by:pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
-