1. 26 Mar, 2025 1 commit
    • Lei Wang's avatar
      [Refactor] Deprecated `T.Buffer` as arguments and rename related calls into `T.Tensor` (#281) · bf8a6fc1
      Lei Wang authored
      * [Refactor] Improve flash attention example and layout comparison logic
      
      - Removed unnecessary annotation for `lse_local_split` in the flash attention example to streamline the code.
      - Updated the handling of `lse_local_split` to utilize parallel processing for better performance.
      - Refactored kernel compilation and profiling logic to enhance clarity and maintainability in the flash attention example.
      - Added a condition in `FragmentNode::IsEqual` to handle broadcast cases, improving the robustness of layout comparisons.
      
      * lint fix
      
      * [Enhancement] Add support for shared memory scope in Fill operation
      
      - Introduced handling for `shared.dyn` and `shared` memory scopes in the Fill operation.
      - Implemented parallel operation and layout inference for improved performance in shared memory scenarios.
      - Updated thread loop partitioning and vectorization logic to accommodate new memory scope handling.
      
      * [Refactor] Remove deprecated decorator and enhance Cython kernel handling
      
      - Removed the deprecated decorator from the main module and added a new implementation in the utils module for better organization.
      - Introduced a pointer map in the Cython kernel adapter to manage pointer arguments, improving runtime shape resolution.
      - Updated the Cython kernel wrapper to utilize the new pointer map for handling kernel arguments.
      - Enhanced error checking in the tensor utility functions to ensure static shapes are enforced.
      - Added a new proxy module for buffer and tensor handling, streamlining the interface for TIR programs.
      
      * [Feature] Add matrix multiplication test and kernel implementation
      
      - Introduced a new test file `test_tilelang_language_ptr.py` that implements a matrix multiplication function using TileLang's primitives.
      - The `matmul_test` function defines a kernel for performing tile-level GEMM operations with customizable block sizes and data types.
      - Added a `run_matmul` function to compile and execute the kernel, along with a test function to validate the implementation.
      - Updated the `proxy.py` file to enhance type handling for buffer and tensor proxies, ensuring compatibility with TIR programs.
      - Minor formatting improvements in `deprecated.py` for better readability.
      
      * lint fix
      
      * [Refactor] Update tensor creation in matrix multiplication test
      
      - Replaced `T.Tensor.from_ptr` with `T.make_tensor` in `matmul_test` for improved clarity and consistency.
      - Updated imports in `__init__.py` to include `make_tensor`.
      - Added `make_tensor` function in `proxy.py` to streamline tensor creation from pointers.
      
      * [Refactor] Update tensor definitions across multiple files
      
      - Replaced instances of `T.Tensor` with updated tensor definitions in various benchmark and example files to enhance consistency and clarity.
      - Adjusted tensor shapes and types in functions related to matrix multiplication, attention mechanisms, and other operations.
      - Improved documentation in README and example files to reflect changes in tensor usage.
      
      * lint fix
      
      * [Refactor] Update tensor types in attention and matrix multiplication examples
      
      - Replaced instances of `T.Tensor` with `T.SharedTensor` and `T.FragmentTensor` in various attention and matrix multiplication functions to improve consistency and clarity.
      - Adjusted tensor definitions in benchmark and example files to align with the new tensor types.
      - Enhanced the overall structure and readability of the code by standardizing tensor usage across multiple files.
      
      * lint fix
      
      * [Refactor] Update tensor types in GEMM example and test files
      
      - Replaced instances of `T.Tensor` with `T.LocalTensor` and `T.Buffer` in the GEMM example and related test functions to improve consistency and clarity.
      - Enhanced the overall structure of the code by standardizing tensor usage across multiple files, aligning with recent updates in tensor definitions.
      
      * [Refactor] Update tensor usage in customize.py
      
      - Replaced instances of `T.Tensor` with `T.Buffer` in the `reshape` and `view` functions to enhance consistency with recent tensor definitions.
      - Improved code clarity by standardizing buffer usage across the file.
      
      * [Refactor] Update tensor types in test_tilelang_transform_annotate_device_regions.py
      
      - Replaced instances of `T.Tensor` with `T.Buffer` in the `before` and `expected` methods of the `TestAnnotateThreadExtent` and `TestAnnotateDeviceScope` classes to enhance consistency with recent tensor definitions.
      - Improved code clarity by standardizing buffer usage across the test file.
      
      * [Refactor] Update tensor types to SharedBuffer and FragmentBuffer
      
      - Replaced instances of `T.SharedTensor` and `T.FragmentTensor` with `T.SharedBuffer` and `T.FragmentBuffer` across multiple benchmark, example, and test files to enhance consistency with recent tensor definitions.
      - Improved code clarity and structure by standardizing buffer usage in attention and matrix multiplication functions.
      
      * [Refactor] Introduce Tensor alias for Buffer in proxy.py
      
      - Added a new alias `Tensor` for `Buffer` in `proxy.py` to facilitate JIT compilation, ensuring that inputs and outputs are mapped with `torch.Tensor`.
      - This change enhances clarity and consistency in tensor usage across the codebase.
      bf8a6fc1
  2. 25 Mar, 2025 1 commit
  3. 24 Mar, 2025 1 commit
    • Lei Wang's avatar
      [Refactor] Improve flash attention example and layout comparison logic (#270) · 5f5bf53c
      Lei Wang authored
      * [Refactor] Improve flash attention example and layout comparison logic
      
      - Removed unnecessary annotation for `lse_local_split` in the flash attention example to streamline the code.
      - Updated the handling of `lse_local_split` to utilize parallel processing for better performance.
      - Refactored kernel compilation and profiling logic to enhance clarity and maintainability in the flash attention example.
      - Added a condition in `FragmentNode::IsEqual` to handle broadcast cases, improving the robustness of layout comparisons.
      
      * lint fix
      
      * [Enhancement] Add support for shared memory scope in Fill operation
      
      - Introduced handling for `shared.dyn` and `shared` memory scopes in the Fill operation.
      - Implemented parallel operation and layout inference for improved performance in shared memory scenarios.
      - Updated thread loop partitioning and vectorization logic to accommodate new memory scope handling.
      5f5bf53c
  4. 22 Mar, 2025 3 commits
    • Chaofan Lin's avatar
      [Bugfix] Fix Benchmark/Example Code for Autotuning (#254) · 0430cfe7
      Chaofan Lin authored
      
      
      * fix tune args
      
      * lint
      
      * Refactor gemm example and autotuner logging
      
      - Updated `ref_program` in `example_gemm.py` to return the result of matrix multiplication instead of modifying an input parameter.
      - Changed logging filename in `__init__.py` from 'out.log' to 'autotuner.log' for better clarity.
      - Modified JIT kernel compilation process to include `out_idx` directly in the adapter creation, enhancing flexibility.
      - Improved validation of `result_idx` in `BaseKernelAdapter` to ensure it falls within valid bounds.
      
      * Refactor `ref_program` in `benchmark_matmul_intrinsic.py` to use the `@` operator for matrix multiplication instead of `torch.matmul`, simplifying the implementation by removing the unused parameter `C`.
      
      ---------
      Co-authored-by: default avatarLeiWang1999 <leiwang1999@outlook.com>
      0430cfe7
    • Lei Wang's avatar
      [Refactor] Refactor CUDA post-processing callback registration in TileLang (#259) · f47b43c5
      Lei Wang authored
      * Add GPU kernel for 2D continuous cumulative sum in TileLang example
      
      - Introduced a new example script `example_tilelang_cumsum.py` that generates a GPU kernel for 2D continuous cumulative sum.
      - Implemented functions to handle kernel configuration, memory allocation, and inclusive scan operations.
      - Added a main execution block to demonstrate the kernel's functionality using PyTorch for tensor operations.
      - Enhanced the example with error handling for power-of-two configurations and validation of results against PyTorch's built-in cumulative sum function.
      
      * Refactor TileLang examples and enhance kernel compilation
      
      - Updated `example_tilelang_cumsum.py` to improve GPU kernel generation for 2D continuous cumulative sum, including better parameter handling and error checking.
      - Refactored `example_mha_bwd.py` to enhance kernel compilation readability and maintainability.
      - Modified `kernel_cache.py` to prevent saving kernels to disk when using the DLPack backend, ensuring proper cache management.
      - Added `get_block_bindings` function to `kernel.py` for improved access to block bindings in kernel launch frames.
      - Cleaned up import statements in `__init__.py` for better organization and clarity.
      
      * Enhance GPU kernel for 2D continuous cumulative sum in TileLang example
      
      - Added additional spacing for improved readability in `example_tilelang_cumsum.py`.
      - Refined kernel structure to enhance clarity and maintainability during GPU kernel generation for cumulative sum operations.
      
      * Refactor CUDA post-processing callback registration in TileLang
      
      - Introduced a new decorator `register_cuda_postproc_callback` for registering CUDA post-processing functions, enhancing usability and flexibility.
      - Updated existing callback implementations to utilize the new decorator, improving code clarity and maintainability.
      - Added debug prints to the CUDA code generation process for better traceability during development.
      - Refactored the `OptimizeForTarget` function to streamline conditional statement handling in the pipeline transformation.
      - Cleaned up the `inject_pipeline.cc` file by removing redundant code related to statement grouping and condition handling.
      
      * lint fix
      
      * Enhance BlockSparse GEMM Example with Autotuning and Configurable Parameters
      
      - Added argument parsing to allow dynamic configuration of matrix dimensions and sparsity ratio.
      - Implemented a function to generate various kernel configurations for autotuning.
      - Refactored the main execution block to support both autotuned and default configurations.
      - Improved the block mask generation to accommodate specified sparsity levels.
      - Updated the kernel compilation process to utilize the new configurations and ensure accurate results verification.
      f47b43c5
    • Lei Wang's avatar
      [Example] Implement Kernel Example cumsum (#258) · cd9ec62e
      Lei Wang authored
      * Add GPU kernel for 2D continuous cumulative sum in TileLang example
      
      - Introduced a new example script `example_tilelang_cumsum.py` that generates a GPU kernel for 2D continuous cumulative sum.
      - Implemented functions to handle kernel configuration, memory allocation, and inclusive scan operations.
      - Added a main execution block to demonstrate the kernel's functionality using PyTorch for tensor operations.
      - Enhanced the example with error handling for power-of-two configurations and validation of results against PyTorch's built-in cumulative sum function.
      
      * Refactor TileLang examples and enhance kernel compilation
      
      - Updated `example_tilelang_cumsum.py` to improve GPU kernel generation for 2D continuous cumulative sum, including better parameter handling and error checking.
      - Refactored `example_mha_bwd.py` to enhance kernel compilation readability and maintainability.
      - Modified `kernel_cache.py` to prevent saving kernels to disk when using the DLPack backend, ensuring proper cache management.
      - Added `get_block_bindings` function to `kernel.py` for improved access to block bindings in kernel launch frames.
      - Cleaned up import statements in `__init__.py` for better organization and clarity.
      
      * Enhance GPU kernel for 2D continuous cumulative sum in TileLang example
      
      - Added additional spacing for improved readability in `example_tilelang_cumsum.py`.
      - Refined kernel structure to enhance clarity and maintainability during GPU kernel generation for cumulative sum operations.
      cd9ec62e
  5. 21 Mar, 2025 1 commit
    • yyttt6's avatar
      add autotune to example_gemm.py (#252) · 316d3b97
      yyttt6 authored
      * add autotune to example_gemm.py
      
      * add autotune to example_gemm.py
      
      * add autotune to example_gemm.py
      
      * add autotune to example_gemm.py
      316d3b97
  6. 20 Mar, 2025 1 commit
    • Lei Wang's avatar
      [Refactor] Phaseout LLVM Dependency by Making it Optional (#247) · f2e99180
      Lei Wang authored
      * remove llvm build
      
      * [Refactor] Update kernel compilation and profiling in examples
      
      - Replaced `tilelang.lower` with `tilelang.compile` in multiple example scripts to streamline kernel compilation.
      - Updated profiling calls to utilize the new `get_profiler` method, enhancing performance measurement consistency.
      - Adjusted assertions and benchmarking methods to align with the new profiling structure across various examples, ensuring correctness and clarity in performance evaluations.
      
      * lint fix
      
      * License Update
      
      * [Refactor] Improve code formatting and documentation in CUDA header and HIP runtime files
      
      - Adjusted formatting in `cuda.h` for better readability, including alignment of comments and struct fields.
      - Cleaned up whitespace and improved comment clarity in `rt_mod_hip.cc` to enhance code maintainability.
      
      * [Refactor] Enhance formatting and clarity in CUDA header and HIP runtime files
      
      - Improved comment alignment and readability in `cuda.h`.
      - Cleaned up whitespace and formatting in `rt_mod_hip.cc` to enhance maintainability.
      
      * lint fix
      
      * lint fix
      
      * lint fix
      
      * lint fix
      
      * fix
      
      * License update
      
      * [Enhancement] Update JITKernel to use artifact for kernel source
      
      - Assigned the generated artifact to `self.artifact` for better management.
      - Updated kernel source references to use `artifact.kernel_source` for consistency in execution backend handling.
      
      * lint fix
      
      * Add @tilelang.testing.requires_llvm decorator to vectorization tests
      
      * Enhance setup.py and env.py for library management
      
      - Added functionality to remove original files after copying in CMakeBuild.
      - Updated TVM_LIBRARY_PATH in env.py to include the PyPI build library path for better integration.
      
      * Refactor TVM_LIBRARY_PATH assignment for improved readability in env.py
      
      * Refactor CMakeBuild file handling in setup.py
      
      - Added a check to ensure the target library directory exists before copying .so files.
      - Improved the logic for creating the target directory and copying files to enhance robustness.
      
      * bugfix
      
      * Rename BuildTLDebug to BuildTileLangCUDAWithoutCompile and update registration. Add @tilelang.testing.requires_llvm decorator to multiple tests for LLVM requirement.
      
      * lint fix
      
      * Enhance TileLang code generation by adding support for device code generation without compilation. Updated `host_codegen` and `device_codegen` functions to include new transformations and registration for `tilelang_hip_without_compile`. Refactored JIT kernel adapters to accommodate host and device modules, improving overall integration and flexibility.
      
      * lint fix
      
      * Add support for C target in device code generation
      
      - Updated `device_codegen_without_compile` to include handling for the C target by registering the `tilelang_cpp` function.
      
      * [Enhancement] Implement auto-clear cache feature based on environment variable
      
      * Added TILELANG_CLEAR_CACHE environment variable to control cache clearing.
      * Updated CI workflow to set TILELANG_CLEAR_CACHE during testing.
      * Modified cache initialization to clear cache if TILELANG_CLEAR_CACHE is set to true.
      
      * [Refactor] Update kernel invocation and import paths in tests and cache
      
      * Changed kernel invocation in `test_tilelang_kernel_dequantize_gemm.py` to return the result.
      * Updated import statements in `test_tilelang_kernel_int4_gemm_mma.py` to use `bitblas` instead of `tilelang`.
      * Refactored paths for artifact and parameters in `kernel_cache.py` for better maintainability.
      
      * [Refactor] Clean up whitespace and improve code formatting in kernel_cache.py
      
      * Removed unnecessary blank lines and adjusted spacing for better readability in the KernelCache class.
      * Enhanced overall code formatting to align with project standards.
      
      * [Enhancement] Add bfloat16 test case and improve kernel caching logic
      
      * Introduced a new test case for bfloat16 matrix multiplication in `test_tilelang_kernel_gemm_mma_intrinsic.py`.
      * Updated `KernelCache` to handle multiple kernel source files and improve error handling during saving and loading.
      * Refactored `JITKernel` to support instantiation from a database, enhancing flexibility in kernel management.
      * Adjusted `CtypesKernelAdapter` and `CythonKernelAdapter` to utilize the new kernel loading mechanism from the database.
      * Improved code formatting and readability across several files.
      
      * lint fix
      
      * Update bfloat16 matrix multiplication test case to use larger dimensions for improved coverage
      f2e99180
  7. 19 Mar, 2025 1 commit
    • Chenghua's avatar
      [Examples] Implement elementwise add kernel (#219) · 43bd9d3e
      Chenghua authored
      * [Example] Modify tuning configurations for FlashAttention example
      
      * [Examples] formatting example_gqa_fwd_bshd.py
      
      * [Examples] Implement elementwise add kernel
      
      * [Doc] Update ElementWise Operators document
      
      * [Examples] Replace the example of elementwise add.
      43bd9d3e
  8. 18 Mar, 2025 2 commits
    • Yu Cheng's avatar
      [Dev] Implement FlashAttention3 Backward (#244) · c264f37f
      Yu Cheng authored
      * [BugFix] Fix bug of missing MBarrierExpectTX
      
      * [Dev] Implement FlashAttention3 Backward
      
      - Added a new example for Flash Attention using pipelined WGMMA, including forward and backward pass implementations.
      - Introduced functions for forward and backward processing, leveraging tilelang for optimized tensor operations.
      - Enhanced the attention mechanism with support for both causal and non-causal configurations.
      - Included command-line arguments for batch size, number of heads, context size, and head dimension for flexibility in testing.
      - Updated GEMM operations to support a new `wg_wait` parameter for improved synchronization in kernel execution.
      c264f37f
    • Lei Wang's avatar
      [Refactor] Refactor for Better Layout Conflict Handling (#240) · 2a286ae6
      Lei Wang authored
      * [Feature] Add reduce_max functionality and corresponding tests
      
      * Introduced a new test file for the reduce_max operation in the tilelang language module.
      * Implemented the reduce_max functionality using T.prim_func, including local memory allocation and result copying.
      * Added tests for various input sizes and data types to ensure correctness of the reduce_max implementation.
      * Enhanced profiling assertions to validate the output against reference implementations.
      
      * Fix whitespace issues in reduce_max test file for improved readability
      
      * [Refactor] Update DebugOutput methods to return strings instead of void
      
      * Modified DebugOutput methods in LayoutNode, FragmentNode, and SwizzledLayoutNode to return std::string instead of void, enhancing usability for logging and debugging.
      * Updated corresponding header files to reflect the new return types.
      * Improved layout inference error messages by incorporating DebugOutput for better clarity in layout conflicts.
      
      * lint fix
      
      * Fix typo in matmul function: changed loop from T.Parallel to T.grid for correct parallel execution in webgpu code generation tests.
      
      * [Enhancement] Improve layout inference conflict handling in ParallelOp
      
      * Updated the layout inference logic in ParallelOp to better handle conflicts for local.fragment buffers.
      * Added checks to ensure that layout conflicts are reported only when both source and destination buffers are defined, improving clarity in error messages.
      * Enhanced the overall robustness of the layout inference process by addressing specific cases where conflicts may arise.
      
      * [Feature] Add IsEqual methods for layout comparison
      
      * Introduced IsEqual methods in LayoutNode, FragmentNode, and SwizzledLayoutNode to facilitate structural equality checks, allowing for optional index comparison.
      * Enhanced layout inference logic in Copy and ParallelOp to utilize the new IsEqual methods for better conflict detection in local.fragment layouts.
      * Improved error messages for layout conflicts to provide clearer guidance on potential issues.houm
      
      * [Refactor] Update profiler usage in benchmark_nsa_fwd.py and improve layout inference in elem.cc and parallel.cc
      
      * Modified the profiler call in benchmark_nsa_fwd.py to streamline latency measurement.
      * Updated layout inference logic in elem.cc and parallel.cc to use const pointers for FragmentNode, enhancing type safety and clarity.
      * Improved error messages in layout conflict checks to provide better guidance on potential issues.
      
      * [Refactor] Clean up pointer formatting in layout inference files
      
      * Standardized pointer formatting for FragmentNode in elem.cc and parallel.cc to improve code readability.
      * Minor adjustments to error message formatting in layout conflict checks for better clarity.
      2a286ae6
  9. 17 Mar, 2025 1 commit
  10. 16 Mar, 2025 1 commit
    • Yu Cheng's avatar
      [Refactor] Update kernel compilation and profiling in examples (#225) · 889451eb
      Yu Cheng authored
      - Replaced instances of `tilelang.lower` and `tilelang.Profiler` with `tilelang.compile` and the new profiler interface in multiple example files.
      - Enhanced the kernel compilation process to utilize the updated API, improving consistency and maintainability.
      - Adjusted benchmarking logic to use the new profiler methods for better clarity and functionality in performance testing.
      - Cleaned up whitespace and improved formatting for better readability across the modified files.
      889451eb
  11. 14 Mar, 2025 2 commits
    • Lei Wang's avatar
      [Enhancement] Avoid tvm ffi handling when out_idx is specified (#209) · 227ed7ec
      Lei Wang authored
      * Optimize CMake build process with dynamic job count calculation
      
      - Modify build_csrc function to use 90% of available CPU cores
      - Ensure at least one job is used during compilation
      - Improve build performance by dynamically adjusting parallel job count
      
      * Optimize build_csrc function with multiprocessing module
      
      - Replace os.cpu_count() with multiprocessing.cpu_count()
      - Maintain existing 90% CPU utilization logic
      - Improve CPU core count calculation for build process
      
      * Add dynamic shape support with out_idx in Cython JIT kernel compilation
      
      - Implement `run_cython_dynamic_shape_with_out_idx` function in test_tilelang_jit_gemm_cython.py
      - Update Cython wrapper to handle dynamic symbolic shapes during tensor allocation
      - Add support for resolving dynamic shape dimensions using input tensor references
      - Enhance flexibility of JIT kernel compilation with symbolic shape handling
      
      * Enhance error reporting for dynamic symbolic shape resolution in Cython JIT kernel
      
      - Add detailed error message when a dynamic symbolic dimension is not found in dynamic_symbolic_map
      - Improve debugging by providing context about missing symbolic dimensions
      - Maintain existing dynamic shape resolution logic
      
      * Fix Copy operation handling for scalar and multi-dimensional tensors
      
      - Add special handling for scalar tensor copy operations
      - Enhance error reporting in MakeIndices method with more detailed diagnostic information
      - Improve SIMT loop generation to support zero-dimensional tensors
      - Add explicit check and handling for scalar tensor scenarios
      
      * Refactor Copy operation code formatting and improve readability
      
      - Improve code formatting in MakeIndices and MakeSIMTLoop methods
      - Add line breaks to enhance readability of complex ICHECK statements
      - Simplify code structure in scalar tensor handling
      - Remove unnecessary whitespace and improve code alignment
      
      * Simplify GEMM example with direct kernel compilation
      
      - Update copyright header to Tile-AI Corporation
      - Remove Profiler import and usage
      - Replace tilelang.lower() with tilelang.compile()
      - Simplify kernel execution workflow
      - Update kernel source retrieval method
      
      * Enhance block sparse attention implementation
      
      - Update `blocksparse_flashattn` to use 2 stages for improved performance.
      - Change `block_mask_dtype` from `int8` to `bool` for better memory efficiency.
      - Modify condition checks in the kernel to utilize boolean values.
      - Introduce a new example for top-k sparse attention and a benchmark for native sparse attention.
      - Add support for asynchronous copy in PTX and improve pipeline planning with condition handling.
      
      * Refactor and clean up code formatting across multiple files
      
      - Added whitespace for improved readability in `example_blocksparse_gemm.py`, `example_tilelang_nsa_fwd.py`, and `benchmark_nsa_fwd.py`.
      - Enhanced code structure and alignment in `inject_ptx_async_copy.cc` and `pipeline_planning.cc`.
      - Updated comments and documentation for clarity in `__init__.py` and `phase.py`.
      - Ensured consistent formatting and style across the codebase.
      
      * Add kernel source printing in example_tilelang_nsa_fwd.py and implement IfThenElse node replacement in inject_pipeline.cc
      
      - Added a print statement to output the kernel source in `example_tilelang_nsa_fwd.py` for debugging purposes.
      - Introduced a new function `replace_if_then_else` in `inject_pipeline.cc` to transform IfThenElse nodes while preserving attributes, enhancing the handling of conditional statements in the pipeline.
      
      * Refactor condition handling in inject_pipeline.cc
      
      - Change the data structure for mapping conditions to statements from a Map to an Array for improved performance and simplicity.
      - Update condition comparison logic to use StructuralEqual for better accuracy.
      - Enhance logging to provide detailed insights into condition changes and statement processing.
      - Adjust final statement construction to utilize the new data structure, ensuring correct handling of conditions and statements.
      
      * Improve logging and formatting in inject_pipeline.cc
      
      - Enhance logging statements for better clarity on condition changes and statement processing.
      - Adjust formatting for improved readability, including line breaks and consistent spacing.
      - Ensure accurate condition comparison and handling in the pipeline logic.
      
      * Refactor logging and clean up inject_pipeline.cc
      
      - Remove excessive logging statements to streamline the code and improve performance.
      - Simplify condition handling by eliminating unnecessary log outputs related to condition changes and statement processing.
      - Maintain the core functionality while enhancing code readability and maintainability.
      
      * Update Dockerfiles to specify exact version of libstdcxx-ng
      
      - Change installation command in multiple Dockerfiles to use `libstdcxx-ng=12` instead of `libstdcxx-ng-12` for consistency and to avoid potential issues with package resolution.
      - Ensure all Dockerfiles from cu118 to cu126 reflect this change for uniformity across builds.
      
      * Refactor and enhance examples and kernel handling
      
      - Adjusted the pipeline stages in `example_blocksparse_gemm.py` from 2 to 1 for improved performance.
      - Added kernel source printing in `benchmark_nsa_fwd.py` for better debugging and profiling insights.
      - Updated tensor allocation and parameter handling in `CtypesKernelAdapter` and `CythonKernelWrapper` to cache parameter dtypes and shapes, improving efficiency and clarity.
      - Enhanced the handling of dynamic shapes in the Cython JIT kernel compilation process.
      - Modified the benchmark script to accommodate new tensor output parameters and improved batch size defaults for testing.
      
      * Update copyright header in Cython wrapper to reflect Tile-AI Corporation
      
      * revert change
      227ed7ec
    • Chenghua's avatar
      [Examples] Expand tuning configurations for FlashAttention example (#204) · 8678aac0
      Chenghua authored
      * [Example] Modify tuning configurations for FlashAttention example
      
      * [Examples] formatting example_gqa_fwd_bshd.py
      8678aac0
  12. 13 Mar, 2025 4 commits
    • Yu Cheng's avatar
      [Dev] Add GQA backward example (#205) · a55f3686
      Yu Cheng authored
      - Introduce `example_gqa_bwd.py` demonstrating the backward pass of FlashAttention with pipelined execution.
      - Implement forward and backward functions for FlashAttention, including preprocessing and postprocessing steps.
      - Enhance argument parsing for batch size, heads, context size, and dimensions.
      - Include a reference implementation for validation and performance benchmarking.
      a55f3686
    • zqh-wz's avatar
      [Feature] Upgrade cutlass version and support fp8 T.gemm (#202) · 2cccf1f5
      zqh-wz authored
      
      
      * upgrade cutlass to upstream v3.8.0
      
      * Implement fp8 gemm and add example script
      
      * Fix dtype retrieval with map_torch_type for fp8 inputs
      
      * Disable vectorization of fp8 values
      
      * Make MMA declaration compatible with cutlass 3.4.0+
      
      * Add test for fp8 T.gemm
      
      * fix indent
      
      * fix indent
      
      * Add copyright and license header
      
      * Add copyright and license header
      
      * lint fix
      
      * Refactor matmul_nt and assert_matmul_correctness functions for improved readability by consolidating parameter definitions and adjusting formatting.
      
      * clang format lint
      
      ---------
      Co-authored-by: default avatarLei Wang <34334180+LeiWang1999@users.noreply.github.com>
      Co-authored-by: default avatarLeiWang1999 <leiwang1999@outlook.com>
      2cccf1f5
    • Lei Wang's avatar
      [Enhancement] Enhancing the handling of conditional statements in the pipeline (#201) · dda8ebff
      Lei Wang authored
      * Optimize CMake build process with dynamic job count calculation
      
      - Modify build_csrc function to use 90% of available CPU cores
      - Ensure at least one job is used during compilation
      - Improve build performance by dynamically adjusting parallel job count
      
      * Optimize build_csrc function with multiprocessing module
      
      - Replace os.cpu_count() with multiprocessing.cpu_count()
      - Maintain existing 90% CPU utilization logic
      - Improve CPU core count calculation for build process
      
      * Add dynamic shape support with out_idx in Cython JIT kernel compilation
      
      - Implement `run_cython_dynamic_shape_with_out_idx` function in test_tilelang_jit_gemm_cython.py
      - Update Cython wrapper to handle dynamic symbolic shapes during tensor allocation
      - Add support for resolving dynamic shape dimensions using input tensor references
      - Enhance flexibility of JIT kernel compilation with symbolic shape handling
      
      * Enhance error reporting for dynamic symbolic shape resolution in Cython JIT kernel
      
      - Add detailed error message when a dynamic symbolic dimension is not found in dynamic_symbolic_map
      - Improve debugging by providing context about missing symbolic dimensions
      - Maintain existing dynamic shape resolution logic
      
      * Fix Copy operation handling for scalar and multi-dimensional tensors
      
      - Add special handling for scalar tensor copy operations
      - Enhance error reporting in MakeIndices method with more detailed diagnostic information
      - Improve SIMT loop generation to support zero-dimensional tensors
      - Add explicit check and handling for scalar tensor scenarios
      
      * Refactor Copy operation code formatting and improve readability
      
      - Improve code formatting in MakeIndices and MakeSIMTLoop methods
      - Add line breaks to enhance readability of complex ICHECK statements
      - Simplify code structure in scalar tensor handling
      - Remove unnecessary whitespace and improve code alignment
      
      * Simplify GEMM example with direct kernel compilation
      
      - Update copyright header to Tile-AI Corporation
      - Remove Profiler import and usage
      - Replace tilelang.lower() with tilelang.compile()
      - Simplify kernel execution workflow
      - Update kernel source retrieval method
      
      * Enhance block sparse attention implementation
      
      - Update `blocksparse_flashattn` to use 2 stages for improved performance.
      - Change `block_mask_dtype` from `int8` to `bool` for better memory efficiency.
      - Modify condition checks in the kernel to utilize boolean values.
      - Introduce a new example for top-k sparse attention and a benchmark for native sparse attention.
      - Add support for asynchronous copy in PTX and improve pipeline planning with condition handling.
      
      * Refactor and clean up code formatting across multiple files
      
      - Added whitespace for improved readability in `example_blocksparse_gemm.py`, `example_tilelang_nsa_fwd.py`, and `benchmark_nsa_fwd.py`.
      - Enhanced code structure and alignment in `inject_ptx_async_copy.cc` and `pipeline_planning.cc`.
      - Updated comments and documentation for clarity in `__init__.py` and `phase.py`.
      - Ensured consistent formatting and style across the codebase.
      
      * Add kernel source printing in example_tilelang_nsa_fwd.py and implement IfThenElse node replacement in inject_pipeline.cc
      
      - Added a print statement to output the kernel source in `example_tilelang_nsa_fwd.py` for debugging purposes.
      - Introduced a new function `replace_if_then_else` in `inject_pipeline.cc` to transform IfThenElse nodes while preserving attributes, enhancing the handling of conditional statements in the pipeline.
      
      * Refactor condition handling in inject_pipeline.cc
      
      - Change the data structure for mapping conditions to statements from a Map to an Array for improved performance and simplicity.
      - Update condition comparison logic to use StructuralEqual for better accuracy.
      - Enhance logging to provide detailed insights into condition changes and statement processing.
      - Adjust final statement construction to utilize the new data structure, ensuring correct handling of conditions and statements.
      
      * Improve logging and formatting in inject_pipeline.cc
      
      - Enhance logging statements for better clarity on condition changes and statement processing.
      - Adjust formatting for improved readability, including line breaks and consistent spacing.
      - Ensure accurate condition comparison and handling in the pipeline logic.
      
      * Refactor logging and clean up inject_pipeline.cc
      
      - Remove excessive logging statements to streamline the code and improve performance.
      - Simplify condition handling by eliminating unnecessary log outputs related to condition changes and statement processing.
      - Maintain the core functionality while enhancing code readability and maintainability.
      dda8ebff
    • Yu Cheng's avatar
      [Dev] Add new example for FlashAttention with pipelined execution (#200) · c2b9b59d
      Yu Cheng authored
      - Introduce `example_gqa_fwd_bshd_wgmma_pipelined.py` demonstrating a pipelined implementation of FlashAttention.
      - Update sequence length parameter in existing example to 8192 and adjust number of stages for improved performance.
      - Enhance argument parsing to accommodate new configurations for batch size, heads, and groups.
      c2b9b59d
  13. 12 Mar, 2025 3 commits
    • Lei Wang's avatar
      [Feature] Support Async Pipeline inference within if scope (#198) · 7ccec53b
      Lei Wang authored
      * Optimize CMake build process with dynamic job count calculation
      
      - Modify build_csrc function to use 90% of available CPU cores
      - Ensure at least one job is used during compilation
      - Improve build performance by dynamically adjusting parallel job count
      
      * Optimize build_csrc function with multiprocessing module
      
      - Replace os.cpu_count() with multiprocessing.cpu_count()
      - Maintain existing 90% CPU utilization logic
      - Improve CPU core count calculation for build process
      
      * Add dynamic shape support with out_idx in Cython JIT kernel compilation
      
      - Implement `run_cython_dynamic_shape_with_out_idx` function in test_tilelang_jit_gemm_cython.py
      - Update Cython wrapper to handle dynamic symbolic shapes during tensor allocation
      - Add support for resolving dynamic shape dimensions using input tensor references
      - Enhance flexibility of JIT kernel compilation with symbolic shape handling
      
      * Enhance error reporting for dynamic symbolic shape resolution in Cython JIT kernel
      
      - Add detailed error message when a dynamic symbolic dimension is not found in dynamic_symbolic_map
      - Improve debugging by providing context about missing symbolic dimensions
      - Maintain existing dynamic shape resolution logic
      
      * Fix Copy operation handling for scalar and multi-dimensional tensors
      
      - Add special handling for scalar tensor copy operations
      - Enhance error reporting in MakeIndices method with more detailed diagnostic information
      - Improve SIMT loop generation to support zero-dimensional tensors
      - Add explicit check and handling for scalar tensor scenarios
      
      * Refactor Copy operation code formatting and improve readability
      
      - Improve code formatting in MakeIndices and MakeSIMTLoop methods
      - Add line breaks to enhance readability of complex ICHECK statements
      - Simplify code structure in scalar tensor handling
      - Remove unnecessary whitespace and improve code alignment
      
      * Simplify GEMM example with direct kernel compilation
      
      - Update copyright header to Tile-AI Corporation
      - Remove Profiler import and usage
      - Replace tilelang.lower() with tilelang.compile()
      - Simplify kernel execution workflow
      - Update kernel source retrieval method
      
      * Enhance block sparse attention implementation
      
      - Update `blocksparse_flashattn` to use 2 stages for improved performance.
      - Change `block_mask_dtype` from `int8` to `bool` for better memory efficiency.
      - Modify condition checks in the kernel to utilize boolean values.
      - Introduce a new example for top-k sparse attention and a benchmark for native sparse attention.
      - Add support for asynchronous copy in PTX and improve pipeline planning with condition handling.
      
      * Refactor and clean up code formatting across multiple files
      
      - Added whitespace for improved readability in `example_blocksparse_gemm.py`, `example_tilelang_nsa_fwd.py`, and `benchmark_nsa_fwd.py`.
      - Enhanced code structure and alignment in `inject_ptx_async_copy.cc` and `pipeline_planning.cc`.
      - Updated comments and documentation for clarity in `__init__.py` and `phase.py`.
      - Ensured consistent formatting and style across the codebase.
      7ccec53b
    • 66RING's avatar
      Update expired example code. (#196) · 6ab29ffc
      66RING authored
      Expired example code, update readme.
      6ab29ffc
    • Lei Wang's avatar
      [Enhancement] Simplify GEMM example with direct kernel compilation (#191) · 79ea77e8
      Lei Wang authored
      * Optimize CMake build process with dynamic job count calculation
      
      - Modify build_csrc function to use 90% of available CPU cores
      - Ensure at least one job is used during compilation
      - Improve build performance by dynamically adjusting parallel job count
      
      * Optimize build_csrc function with multiprocessing module
      
      - Replace os.cpu_count() with multiprocessing.cpu_count()
      - Maintain existing 90% CPU utilization logic
      - Improve CPU core count calculation for build process
      
      * Add dynamic shape support with out_idx in Cython JIT kernel compilation
      
      - Implement `run_cython_dynamic_shape_with_out_idx` function in test_tilelang_jit_gemm_cython.py
      - Update Cython wrapper to handle dynamic symbolic shapes during tensor allocation
      - Add support for resolving dynamic shape dimensions using input tensor references
      - Enhance flexibility of JIT kernel compilation with symbolic shape handling
      
      * Enhance error reporting for dynamic symbolic shape resolution in Cython JIT kernel
      
      - Add detailed error message when a dynamic symbolic dimension is not found in dynamic_symbolic_map
      - Improve debugging by providing context about missing symbolic dimensions
      - Maintain existing dynamic shape resolution logic
      
      * Fix Copy operation handling for scalar and multi-dimensional tensors
      
      - Add special handling for scalar tensor copy operations
      - Enhance error reporting in MakeIndices method with more detailed diagnostic information
      - Improve SIMT loop generation to support zero-dimensional tensors
      - Add explicit check and handling for scalar tensor scenarios
      
      * Refactor Copy operation code formatting and improve readability
      
      - Improve code formatting in MakeIndices and MakeSIMTLoop methods
      - Add line breaks to enhance readability of complex ICHECK statements
      - Simplify code structure in scalar tensor handling
      - Remove unnecessary whitespace and improve code alignment
      
      * Simplify GEMM example with direct kernel compilation
      
      - Update copyright header to Tile-AI Corporation
      - Remove Profiler import and usage
      - Replace tilelang.lower() with tilelang.compile()
      - Simplify kernel execution workflow
      - Update kernel source retrieval method
      79ea77e8
  14. 11 Mar, 2025 1 commit
    • Yu Cheng's avatar
      [Dev][Bugfix] Add RMS Normalization Kernels and Fix Reduce Bug (#188) · fe0de672
      Yu Cheng authored
      * [Dev][Bugfix] Add RMS Normalization Kernels and Fix Reduce Bug
      
      - Implement two RMS normalization implementations in TileLang:
        * `rms_norm_splitk`: Split-K reduction approach for large matrices
        * `rms_norm`: Full reduction kernel with simplified implementation
      - Add reference implementation using PyTorch for validation
      - Include performance benchmarking for both kernel variants
      - Demonstrate flexible block size and matrix size configurations
      
      * [Examples] Simplify RMS Normalization Kernel Compilation
      
      - Remove commented-out code for split-K RMS normalization
      - Simplify kernel compilation by removing explicit TMA lowering configuration
      - Update copyright header to Tile-AI Corporation
      - Streamline main script for RMS normalization example
      fe0de672
  15. 10 Mar, 2025 1 commit
    • Lei Wang's avatar
      [Examples] Implement NSA Backward kernels (#180) · 6891d3ec
      Lei Wang authored
      
      * Update native sparse attention example with scale parameter handling
      
      - Add scale parameter processing in native_sparse_attention function
      - Modify example script to include custom scale value
      - Update function calls to pass scale parameter
      - Enhance flexibility of sparse attention implementation
      
      * Refactor Triton Native Sparse Attention Example
      
      - Improve code formatting and readability in example_triton_nsa_bwd.py
      - Standardize function and parameter alignment
      - Remove unnecessary whitespaces and optimize imports
      - Enhance code style consistency with previous commits
      6891d3ec
  16. 09 Mar, 2025 1 commit
    • Lei Wang's avatar
      [Feat] Introduce new caching mechanism for compiled kernels (#176) · 7bde63d5
      Lei Wang authored
      * Add kernel caching mechanism to TileLang
      
      - Implement a new `cached` function in `tilelang/cache/__init__.py` to cache and reuse compiled kernels
      - Expose the `cached` function in the main `tilelang/__init__.py`
      - Add a test case for cached matrix multiplication in `testing/python/cache/test_tilelang_cache_matmul.py`
      - Provide a `clear_cache()` function to reset the kernel cache when needed
      
      * Refactor kernel caching test and implementation
      
      - Simplify the `cached` function in `tilelang/cache/__init__.py`
      - Update test script `test_tilelang_cache_matmul.py` to use `tilelang.testing.main()`
      - Remove unnecessary whitespace and improve code formatting
      
      * Update import for `cached` function in MHA examples
      
      - Modify import statement in `example_mha_bwd.py` and `test_tilelang_kernel_mha_bwd.py`
      - Change import from `tilelang.profiler import cached` to `tilelang import cached`
      - Align with recent refactoring of kernel caching mechanism
      
      * Refactor `cached` function signature in kernel caching
      
      - Update function signature to use keyword-only arguments for `target` and `target_host`
      - Improve parameter order and readability of the `cached` decorator
      - Maintain existing functionality while enhancing function definition
      7bde63d5
  17. 07 Mar, 2025 5 commits
    • Lei Wang's avatar
      [Example] Implement tilelang native sparse attention varlen example (#170) · 8e1845d2
      Lei Wang authored
      * [Refactor] Update BitBLAS Benchmark with TileLang Carver Imports and Roller Hints Generation
      
      - Replace BitBLAS imports with TileLang Carver imports in benchmark_matmul.py
      - Modify roller hints generation using new TileLang Carver template and utility functions
      - Update get_roller_hints_from_func to handle None cases and improve return logic
      - Adjust DefaultPolicy to handle different codegen dictionary formats
      
      * [Refactor] Update Thread Binding and Import Statements in TileLang Kernels
      
      - Replace T.thread_binding() with T.get_thread_binding() across multiple kernel test files
      - Update import statements for MMA layout and macro generator in dequantize GEMM and FP8 examples
      - Move map_torch_type utility function to tilelang.utils.tensor
      - Remove unnecessary imports and improve code organization
      
      * Refactor Native Sparse Attention Example with Enhanced Triton Kernel
      
      - Update parallel_nsa_fwd_kernel to support more flexible sparse attention computation
      - Add support for block counts and offsets in the Triton kernel
      - Modify kernel grid and computation logic for improved performance
      - Update example script to use naive_nsa_simple reference implementation
      - Improve type hints and kernel configuration
      
      * Add Native Sparse Attention Examples with Tilelang and Triton Implementations
      
      - Introduce new example scripts for native sparse attention:
        * example_tilelang_nsa_fwd.py: Forward pass implementation using TileLang
        * example_tilelang_nsa_decode.py: Decoding-specific sparse attention implementation
        * example_triton_nsa_fwd.py: Triton-based sparse attention forward pass
      - Update reference.py with naive implementations for sparse attention
      - Support different sparse attention scenarios including forward pass and inference
      - Add comprehensive testing and validation against reference implementations
      
      * lint fix
      
      * Add Variable-Length Native Sparse Attention Examples for TileLang and Triton
      
      - Introduce new example scripts for variable-length native sparse attention:
        * example_tilelang_nsa_fwd_varlen.py: TileLang implementation with variable sequence lengths
        * example_triton_nsa_fwd_varlen.py: Triton implementation with variable sequence lengths
      - Update reference.py to support variable-length sparse attention scenarios
      - Enhance existing sparse attention implementations to handle variable-length inputs
      - Add comprehensive testing and validation for variable-length sparse attention
      
      * Refactor Native Sparse Attention Examples: Code Style and Formatting Improvements
      
      - Standardize function and parameter formatting across NSA example files
      - Improve code readability by adjusting indentation and line breaks
      - Enhance type hints and parameter alignment
      - Remove unnecessary whitespaces and optimize imports
      - Maintain consistent code style across TileLang and Triton implementations
      8e1845d2
    • You Jiacheng's avatar
      [Dev] Use SS-GEMM for PV in mla (#165) · 166a9585
      You Jiacheng authored
      It's slightly faster than T.copy then RS-GEMM, and simpler.
      166a9585
    • Lei Wang's avatar
      [Example] Implement NSA Decode tilelang exampls (#168) · 69f35439
      Lei Wang authored
      * [Refactor] Update BitBLAS Benchmark with TileLang Carver Imports and Roller Hints Generation
      
      - Replace BitBLAS imports with TileLang Carver imports in benchmark_matmul.py
      - Modify roller hints generation using new TileLang Carver template and utility functions
      - Update get_roller_hints_from_func to handle None cases and improve return logic
      - Adjust DefaultPolicy to handle different codegen dictionary formats
      
      * [Refactor] Update Thread Binding and Import Statements in TileLang Kernels
      
      - Replace T.thread_binding() with T.get_thread_binding() across multiple kernel test files
      - Update import statements for MMA layout and macro generator in dequantize GEMM and FP8 examples
      - Move map_torch_type utility function to tilelang.utils.tensor
      - Remove unnecessary imports and improve code organization
      
      * Refactor Native Sparse Attention Example with Enhanced Triton Kernel
      
      - Update parallel_nsa_fwd_kernel to support more flexible sparse attention computation
      - Add support for block counts and offsets in the Triton kernel
      - Modify kernel grid and computation logic for improved performance
      - Update example script to use naive_nsa_simple reference implementation
      - Improve type hints and kernel configuration
      
      * Add Native Sparse Attention Examples with Tilelang and Triton Implementations
      
      - Introduce new example scripts for native sparse attention:
        * example_tilelang_nsa_fwd.py: Forward pass implementation using TileLang
        * example_tilelang_nsa_decode.py: Decoding-specific sparse attention implementation
        * example_triton_nsa_fwd.py: Triton-based sparse attention forward pass
      - Update reference.py with naive implementations for sparse attention
      - Support different sparse attention scenarios including forward pass and inference
      - Add comprehensive testing and validation against reference implementations
      
      * lint fix
      69f35439
    • Lei Wang's avatar
      [Bugfix] Cast bool dtype into int8 in blocksparse examples (#167) · b6c48453
      Lei Wang authored
      * [Refactor] Update BitBLAS Benchmark with TileLang Carver Imports and Roller Hints Generation
      
      - Replace BitBLAS imports with TileLang Carver imports in benchmark_matmul.py
      - Modify roller hints generation using new TileLang Carver template and utility functions
      - Update get_roller_hints_from_func to handle None cases and improve return logic
      - Adjust DefaultPolicy to handle different codegen dictionary formats
      
      * [Refactor] Update Thread Binding and Import Statements in TileLang Kernels
      
      - Replace T.thread_binding() with T.get_thread_binding() across multiple kernel test files
      - Update import statements for MMA layout and macro generator in dequantize GEMM and FP8 examples
      - Move map_torch_type utility function to tilelang.utils.tensor
      - Remove unnecessary imports and improve code organization
      
      * Refactor Native Sparse Attention Example with Enhanced Triton Kernel
      
      - Update parallel_nsa_fwd_kernel to support more flexible sparse attention computation
      - Add support for block counts and offsets in the Triton kernel
      - Modify kernel grid and computation logic for improved performance
      - Update example script to use naive_nsa_simple reference implementation
      - Improve type hints and kernel configuration
      b6c48453
    • Lei Wang's avatar
      [Refactor] Replace `T.thread_binding` with `T.get_thread_binding` in examples and test cases (#163) · de1ba1e4
      Lei Wang authored
      * [Refactor] Update BitBLAS Benchmark with TileLang Carver Imports and Roller Hints Generation
      
      - Replace BitBLAS imports with TileLang Carver imports in benchmark_matmul.py
      - Modify roller hints generation using new TileLang Carver template and utility functions
      - Update get_roller_hints_from_func to handle None cases and improve return logic
      - Adjust DefaultPolicy to handle different codegen dictionary formats
      
      * [Refactor] Update Thread Binding and Import Statements in TileLang Kernels
      
      - Replace T.thread_binding() with T.get_thread_binding() across multiple kernel test files
      - Update import statements for MMA layout and macro generator in dequantize GEMM and FP8 examples
      - Move map_torch_type utility function to tilelang.utils.tensor
      - Remove unnecessary imports and improve code organization
      de1ba1e4
  18. 06 Mar, 2025 2 commits
    • Lei Wang's avatar
      Refactor MLA decode kernel: Replace T.If with native Python if statement (#162) · cfcbcf1e
      Lei Wang authored
      Simplify the control flow in the MLA decode kernel by replacing TileLang's T.If construct with a standard Python if statement. This change improves code readability and maintains the existing logic for handling sequence length constraints during block-wise computation.
      cfcbcf1e
    • Yu Cheng's avatar
      [Dev][Benchmark] Add MLA paged decoding example and benchmark script (#158) · be9abf18
      Yu Cheng authored
      * [Dev] Adjust computation logic to avoid precision loss when casting acc_s from float to float16
      
      - Remove redundant `acc_s_0` fragment in flash attention kernel
      - Simplify memory copy and reduction operations
      - Reorder memory copy and scaling steps for improved performance
      - Add Hopper-specific synchronization method in CUDA reduce template
      - Update reduce operation to use architecture-specific synchronization
      
      * [Dev] Add DeepSeek MLA Decoding (Paged+Varlen) kernel and Performance Benchmark Script
      
      - Implement comprehensive MLA (Multi-Head Latent Attention) decoding benchmark script
      - Add support for multiple implementations: Torch, TileLang, FlashMLA, FlashInfer, and Triton
      - Create flexible configuration for benchmarking different batch sizes, sequence lengths, and head configurations
      - Implement performance comparison and CSV output for detailed performance analysis
      - Add command-line argument support for targeted benchmarking and comparison
      
      * [Dev] Refactor MLA Paged Decoding Kernel with Improved Block Handling and Precision
      
      - Replace `d` parameter with `dv` to clarify value dimension in MLA decoding
      - Enhance block distribution logic for split KV processing
      - Improve handling of remaining blocks in split KV computation
      - Add initialization of `lse_max_local` to prevent potential precision issues
      - Optimize block start and range calculations for more accurate sequence processing
      
      * lint
      be9abf18
  19. 05 Mar, 2025 2 commits
    • Lei Wang's avatar
      [Refactor] Rename gemm fp8 example as we currently lack `T.gemm` support for fp8 (#144) · 37d44f24
      Lei Wang authored
      * Change default log level from WARNING to INFO in TileLang initialization
      
      * Refactor Flash Attention Variable-Length MHA Example with Cython Backend Support
      
      - Update `example_mha_fwd_varlen.py` to use Cython backend for kernel compilation
      - Remove unused imports and simplify function signature
      - Modify `flashattn` function to handle max sequence length as a separate argument
      - Update kernel call to include max sequence length parameter
      - Improve code readability and remove commented-out code
      - Add print statement to confirm successful assertion
      
      * Refactor code formatting in TileLang lowering and example files
      
      - Improve line breaks and code formatting in `lower.py`, `wrapper.py`, and `tensor.py`
      - Simplify line breaks and reduce unnecessary whitespace
      - Enhance code readability by adjusting indentation and line breaks
      - Update example MHA forward pass script with cleaner tensor initialization
      
      * Update TileLang kernel test with import path changes for MMA layout and macro generator
      
      - Modify import statements in test_tilelang_kernel_dequantize_gemm.py
      - Replace bitblas imports with tilelang.intrinsics imports for MMA-related utilities
      - Update main function to use tilelang.testing.main()
      
      * Add Block Sparse Attention Examples for TileLang and Triton
      
      - Implement block sparse attention kernels for both TileLang and Triton
      - Add utility functions for generating sparse attention masks using top-k and threshold methods
      - Support causal and variable-length attention scenarios
      - Include test cases for different sequence length configurations
      - Demonstrate block-level sparse attention with configurable parameters
      
      * Refactor Block Sparse Attention Examples with Code Style Improvements
      
      - Improve code formatting in block_sparse_attn_tilelang.py and block_sparse_attn_triton.py
      - Enhance readability by adjusting line breaks and indentation
      - Simplify kernel and function calls with better formatting
      - Add whitespace and line break improvements for better code clarity
      
      * Enhance Layout Plotting with Multi-Replication and Dynamic Visualization
      
      - Update plot_layout function to support multiple replications in thread and value mapping
      - Improve thread and value mapping to handle replicated layouts
      - Dynamically adjust figure size and legend positioning
      - Add print statements for saved plot file paths
      - Modify example fragment_mma_load_a.py to uncomment and enable warp and block layout plotting
      
      * Refactor AtomicAdd functions in CUDA common header
      
      - Implement a generic template for AtomicAdd function
      - Specialize templates for half_t, bfloat16_t, and pointer types
      - Reorganize and clean up existing AtomicAdd implementations
      - Improve type handling and conversion in atomic operations
      
      * Remove unused import in MHA backward test file
      
      - Remove unnecessary argparse import from test_tilelang_kenrel_mha_bwd.py
      - Add blank line for improved code formatting
      - Minor code cleanup in test file
      
      * Add FP8 GEMM Example with TensorCore Intrinsics
      
      - Implement a new example for FP8 matrix multiplication using TensorCore intrinsics
      - Support E4M3 and E5M2 floating-point 8-bit data types
      - Add README with notes on current FP8 implementation limitations
      - Include correctness test for FP8 GEMM with different configurations
      - Demonstrate swizzle layout and pipeline optimizations for FP8 computation
      37d44f24
    • Yu Cheng's avatar
      [Dev] Adjust computation logic to avoid precision loss when casting acc_s from... · e1d82bf3
      Yu Cheng authored
      [Dev] Adjust computation logic to avoid precision loss when casting acc_s from float to float16 (#141)
      
      - Remove redundant `acc_s_0` fragment in flash attention kernel
      - Simplify memory copy and reduction operations
      - Reorder memory copy and scaling steps for improved performance
      - Add Hopper-specific synchronization method in CUDA reduce template
      - Update reduce operation to use architecture-specific synchronization
      e1d82bf3
  20. 04 Mar, 2025 2 commits
  21. 03 Mar, 2025 3 commits
    • Lei Wang's avatar
      [Debug] Improve Memory Layout Plot (#136) · e32311b2
      Lei Wang authored
      * Change default log level from WARNING to INFO in TileLang initialization
      
      * Refactor Flash Attention Variable-Length MHA Example with Cython Backend Support
      
      - Update `example_mha_fwd_varlen.py` to use Cython backend for kernel compilation
      - Remove unused imports and simplify function signature
      - Modify `flashattn` function to handle max sequence length as a separate argument
      - Update kernel call to include max sequence length parameter
      - Improve code readability and remove commented-out code
      - Add print statement to confirm successful assertion
      
      * Refactor code formatting in TileLang lowering and example files
      
      - Improve line breaks and code formatting in `lower.py`, `wrapper.py`, and `tensor.py`
      - Simplify line breaks and reduce unnecessary whitespace
      - Enhance code readability by adjusting indentation and line breaks
      - Update example MHA forward pass script with cleaner tensor initialization
      
      * Update TileLang kernel test with import path changes for MMA layout and macro generator
      
      - Modify import statements in test_tilelang_kernel_dequantize_gemm.py
      - Replace bitblas imports with tilelang.intrinsics imports for MMA-related utilities
      - Update main function to use tilelang.testing.main()
      
      * Add Block Sparse Attention Examples for TileLang and Triton
      
      - Implement block sparse attention kernels for both TileLang and Triton
      - Add utility functions for generating sparse attention masks using top-k and threshold methods
      - Support causal and variable-length attention scenarios
      - Include test cases for different sequence length configurations
      - Demonstrate block-level sparse attention with configurable parameters
      
      * Refactor Block Sparse Attention Examples with Code Style Improvements
      
      - Improve code formatting in block_sparse_attn_tilelang.py and block_sparse_attn_triton.py
      - Enhance readability by adjusting line breaks and indentation
      - Simplify kernel and function calls with better formatting
      - Add whitespace and line break improvements for better code clarity
      
      * Enhance Layout Plotting with Multi-Replication and Dynamic Visualization
      
      - Update plot_layout function to support multiple replications in thread and value mapping
      - Improve thread and value mapping to handle replicated layouts
      - Dynamically adjust figure size and legend positioning
      - Add print statements for saved plot file paths
      - Modify example fragment_mma_load_a.py to uncomment and enable warp and block layout plotting
      e32311b2
    • Yu Cheng's avatar
      [Doc] Update MLA Documentation (#135) · b70683b3
      Yu Cheng authored
      b70683b3
    • Yu Cheng's avatar
      [Dev][Doc] Add DeepSeek MLA Decode Example with Documentation and Performance Benchmarks (#134) · cd94aca1
      Yu Cheng authored
      * [Dev] Add RetNet Linear Attention example
      
      * [Dev] Add WgmmaSync rewriter for pipelined WGMMA operations and add MHA WGMMA pipelined example (FA3-like scheduling)
      
      This commit introduces a new transformation pass `RewriteWgmmaSync` to optimize warp group matrix multiply accumulate (WGMMA) operations in the TileLang compiler:
      
      - Implemented `WgmmaSyncRewriter` in `src/transform/wgmma_sync_rewriter.cc`
      - Added pass registration for `RewriteWgmmaSync`
      - Updated `tilelang/engine/phase.py` to include the new transformation pass
      - Updated `tilelang/transform/__init__.py` to expose the new pass
      
      The rewriter intelligently manages synchronization and dependencies between WGMMA operations, improving pipeline efficiency for complex matrix multiplication kernels.
      
      * [Bugfix] Fix bug in ThreadTagChecker for warp specialization
      
      Improve thread tag validation in warp specialized rewriter to prevent unintended transformations:
      - Add more precise checks for threadIdx.y and threadIdx.z
      - Validate thread extent to ensure only single-extent thread bindings are allowed
      - Prevent warp specialization for multi-extent thread bindings in y and z dimensions
      
      * lint
      
      * [CI] Add TMA descriptor attribute to transformed module in test case
      
      * [Dev] Refactor DeepSeek MLA Decode Example with Non-Split and Split Flash Attention Implementations
      
      - Add new `flash_attn` macro for non-split flash attention implementation
      - Add swizzled layout for tile in shared memory
      - Use threadblock swizzle to imporve L2 cache hit rate
      
      * [Dev] Add DeepSeek MLA Decode Example with Documentation and Performance Benchmarks
      
      - Add detailed README.md explaining MLA (Multi-Head Latent Attention) implementation
      - Include performance benchmark images for batch sizes 64 and 128
      - Add layout visualization images for QK and PV operations
      - Implement torch reference implementations in torch_refs.py
      - Update example_mla_decode.py with command-line argument support and flexible configuration
      - Add performance benchmarking and comparison with other implementations
      cd94aca1
  22. 02 Mar, 2025 1 commit
    • Lei Wang's avatar
      [Kernel] Implement different SEQ Q/KV examples with block sparse (#133) · 159af5df
      Lei Wang authored
      * Change default log level from WARNING to INFO in TileLang initialization
      
      * Refactor Flash Attention Variable-Length MHA Example with Cython Backend Support
      
      - Update `example_mha_fwd_varlen.py` to use Cython backend for kernel compilation
      - Remove unused imports and simplify function signature
      - Modify `flashattn` function to handle max sequence length as a separate argument
      - Update kernel call to include max sequence length parameter
      - Improve code readability and remove commented-out code
      - Add print statement to confirm successful assertion
      
      * Refactor code formatting in TileLang lowering and example files
      
      - Improve line breaks and code formatting in `lower.py`, `wrapper.py`, and `tensor.py`
      - Simplify line breaks and reduce unnecessary whitespace
      - Enhance code readability by adjusting indentation and line breaks
      - Update example MHA forward pass script with cleaner tensor initialization
      
      * Update TileLang kernel test with import path changes for MMA layout and macro generator
      
      - Modify import statements in test_tilelang_kernel_dequantize_gemm.py
      - Replace bitblas imports with tilelang.intrinsics imports for MMA-related utilities
      - Update main function to use tilelang.testing.main()
      
      * Add Block Sparse Attention Examples for TileLang and Triton
      
      - Implement block sparse attention kernels for both TileLang and Triton
      - Add utility functions for generating sparse attention masks using top-k and threshold methods
      - Support causal and variable-length attention scenarios
      - Include test cases for different sequence length configurations
      - Demonstrate block-level sparse attention with configurable parameters
      
      * Refactor Block Sparse Attention Examples with Code Style Improvements
      
      - Improve code formatting in block_sparse_attn_tilelang.py and block_sparse_attn_triton.py
      - Enhance readability by adjusting line breaks and indentation
      - Simplify kernel and function calls with better formatting
      - Add whitespace and line break improvements for better code clarity
      159af5df