- 15 Dec, 2025 1 commit
-
-
Xiangwen Wang authored
-
- 29 Oct, 2025 1 commit
-
-
Cunxiao Ni authored
* [BugFix] Correct direct copy from bf16 to fp8 * fix lint * implement overloaded cast codegen for type conversion * fix lint * remove test * fix lint * trigger CI * Overload fp8 for implicit conversion * format * new format * fix: Reinterpret types to cute types in GEMM * new format * fix lint * new format * fix lint * format * trigger ci --------- Co-authored-by:nicunxiao <nicunxiao@bytedance.com>
-
- 15 Oct, 2025 1 commit
-
-
LJC00118 authored
* Remove an incorrect check * add fp8 pack function * code lint * minor fix * minor fix * minor fix * Minor fix * Minor fix
-
- 28 Sep, 2025 1 commit
-
-
Zhiwen Mo authored
* update sm100 related utcmma, tmem, ld/st256 in src * update sm100 related utcmma, tmem, ld/st256 in tilelang * Remove deprecated GEMM examples and related README documentation for SM100 architecture support * Update GEMM implementation to replace UTCMMA with TCGEN5MMA across relevant files * Remove gemm_umma.py example and update README to reflect TCGEN5MMA terminology changes * Update README.md for gemm_sm100 example by removing outdated API sections and streamlining documentation * Update README and source files to reflect TCGEN5.MMA terminology changes * Refactor CUDA GEMM header for improved readability
-
- 26 May, 2025 1 commit
-
-
Lei Wang authored
* [Refactor] Enhance GEMM Warp Partitioning Logic and Introduce Buffer Remapping (#516) * Improved the warp partitioning logic in `Gemm::ComputeWarpPartition` to better accommodate various GEMM policies, including FullRow, FullCol, and Square, ensuring optimal performance based on matrix dimensions. * Introduced a new `RemapBufferRewriter` class to handle buffer reference updates and padding annotations during statement transformations, enhancing memory access safety and clarity. * Updated the `OptimizeForTarget` function to include a new step for configuring index bitwidth, improving the overall optimization process. * Refactored existing code to utilize constants for warp sizes, enhancing maintainability and readability. * Added checks to ensure correct warp allocation and padding map handling, improving robustness in memory management strategies. * [Refactor] Update ConfigIndexBitwidthRewriter to Support Auto-Check Feature * Modified the constructor of `ConfigIndexBitwidthRewriter` to include an `auto_check` parameter, allowing for dynamic bitwidth adjustments based on input conditions. * Enhanced the `VisitExpr_` methods to apply the new auto-check logic, ensuring that integer types are upgraded to 64 bits when necessary, or to a specified index bitwidth otherwise. * Updated the `ConfigIndexBitwidth` pass to determine the index bitwidth based on the presence of configuration, improving flexibility in handling different scenarios. * Add dynamic matrix multiplication example and corresponding test * Introduced `example_dynamic.py` to demonstrate dynamic matrix multiplication using TileLang and PyTorch, including a main function for execution and performance profiling. * Added `test_example_dynamic.py` to validate the functionality of the dynamic matrix multiplication example. * The example includes detailed parameter configurations and checks against PyTorch's implementation for correctness. * lint fix * Add get_num_sms function to retrieve the number of streaming multiprocessors on the CUDA device * Implemented the `get_num_sms` function in `cuda_driver.py` to return the count of streaming multiprocessors for a specified CUDA device. * Updated the `__init__.py` file to include the new function in the module exports. * lint fix * Add global barrier state and expectation handling in CUDA code generation * Introduced `vid_global_barrier_state_` and `vid_global_barrier_expect_` to manage global barrier synchronization in the CUDA code generator. * Updated `Finish` method to declare the global barrier state if needed. * Implemented handling for `EvaluateNode` to initialize the barrier expectation. * Removed unnecessary extern declaration for the global barrier state in `PrintStorageSync` method. * Enhanced CUDA FP8 type definitions for better alignment and structure. * Enhance CUDA FP8 type handling and debug printing * Updated `cuda_fp8.h` to replace NVidia's FP8 types with Cute's FP8 types for better compatibility and structure. * Added specializations for `debug_print_var` and `debug_print_buffer_value` functions to support the new FP8 types, improving debugging capabilities for these data types. * Updated `debug.h` to include the new `cuda_fp8.h` header for access to the FP8 type definitions. * Refactor CUDA code generation to remove unnecessary managed qualifier for global barrier state * Updated the `Finish` method in `codegen_cuda.cc` to declare the global barrier state without the `__managed__` qualifier, simplifying the declaration. * Added a new `sync_global` function in `builtin.py` to synchronize all threads in a block, enhancing synchronization capabilities in the TileLang framework. * Remove deprecated CUDA kernel and Python script for FP8 E4M3 casting * Deleted the `cast_to_fp8_e4m3_kernel` CUDA kernel implementation and its corresponding Python script, streamlining the codebase by removing unused components related to FP8 E4M3 type casting. * This cleanup enhances maintainability and reduces potential confusion regarding obsolete code. * lint fix
-
- 25 May, 2025 1 commit
-
-
Lei Wang authored
* [Refactor] Enhance GEMM Warp Partitioning Logic and Introduce Buffer Remapping (#516) * Improved the warp partitioning logic in `Gemm::ComputeWarpPartition` to better accommodate various GEMM policies, including FullRow, FullCol, and Square, ensuring optimal performance based on matrix dimensions. * Introduced a new `RemapBufferRewriter` class to handle buffer reference updates and padding annotations during statement transformations, enhancing memory access safety and clarity. * Updated the `OptimizeForTarget` function to include a new step for configuring index bitwidth, improving the overall optimization process. * Refactored existing code to utilize constants for warp sizes, enhancing maintainability and readability. * Added checks to ensure correct warp allocation and padding map handling, improving robustness in memory management strategies. * [Refactor] Update ConfigIndexBitwidthRewriter to Support Auto-Check Feature * Modified the constructor of `ConfigIndexBitwidthRewriter` to include an `auto_check` parameter, allowing for dynamic bitwidth adjustments based on input conditions. * Enhanced the `VisitExpr_` methods to apply the new auto-check logic, ensuring that integer types are upgraded to 64 bits when necessary, or to a specified index bitwidth otherwise. * Updated the `ConfigIndexBitwidth` pass to determine the index bitwidth based on the presence of configuration, improving flexibility in handling different scenarios. * Add dynamic matrix multiplication example and corresponding test * Introduced `example_dynamic.py` to demonstrate dynamic matrix multiplication using TileLang and PyTorch, including a main function for execution and performance profiling. * Added `test_example_dynamic.py` to validate the functionality of the dynamic matrix multiplication example. * The example includes detailed parameter configurations and checks against PyTorch's implementation for correctness. * lint fix * Add get_num_sms function to retrieve the number of streaming multiprocessors on the CUDA device * Implemented the `get_num_sms` function in `cuda_driver.py` to return the count of streaming multiprocessors for a specified CUDA device. * Updated the `__init__.py` file to include the new function in the module exports. * lint fix * Add global barrier state and expectation handling in CUDA code generation * Introduced `vid_global_barrier_state_` and `vid_global_barrier_expect_` to manage global barrier synchronization in the CUDA code generator. * Updated `Finish` method to declare the global barrier state if needed. * Implemented handling for `EvaluateNode` to initialize the barrier expectation. * Removed unnecessary extern declaration for the global barrier state in `PrintStorageSync` method. * Enhanced CUDA FP8 type definitions for better alignment and structure.
-
- 20 Mar, 2025 1 commit
-
-
Lei Wang authored
* remove llvm build * [Refactor] Update kernel compilation and profiling in examples - Replaced `tilelang.lower` with `tilelang.compile` in multiple example scripts to streamline kernel compilation. - Updated profiling calls to utilize the new `get_profiler` method, enhancing performance measurement consistency. - Adjusted assertions and benchmarking methods to align with the new profiling structure across various examples, ensuring correctness and clarity in performance evaluations. * lint fix * License Update * [Refactor] Improve code formatting and documentation in CUDA header and HIP runtime files - Adjusted formatting in `cuda.h` for better readability, including alignment of comments and struct fields. - Cleaned up whitespace and improved comment clarity in `rt_mod_hip.cc` to enhance code maintainability. * [Refactor] Enhance formatting and clarity in CUDA header and HIP runtime files - Improved comment alignment and readability in `cuda.h`. - Cleaned up whitespace and formatting in `rt_mod_hip.cc` to enhance maintainability. * lint fix * lint fix * lint fix * lint fix * fix * License update * [Enhancement] Update JITKernel to use artifact for kernel source - Assigned the generated artifact to `self.artifact` for better management. - Updated kernel source references to use `artifact.kernel_source` for consistency in execution backend handling. * lint fix * Add @tilelang.testing.requires_llvm decorator to vectorization tests * Enhance setup.py and env.py for library management - Added functionality to remove original files after copying in CMakeBuild. - Updated TVM_LIBRARY_PATH in env.py to include the PyPI build library path for better integration. * Refactor TVM_LIBRARY_PATH assignment for improved readability in env.py * Refactor CMakeBuild file handling in setup.py - Added a check to ensure the target library directory exists before copying .so files. - Improved the logic for creating the target directory and copying files to enhance robustness. * bugfix * Rename BuildTLDebug to BuildTileLangCUDAWithoutCompile and update registration. Add @tilelang.testing.requires_llvm decorator to multiple tests for LLVM requirement. * lint fix * Enhance TileLang code generation by adding support for device code generation without compilation. Updated `host_codegen` and `device_codegen` functions to include new transformations and registration for `tilelang_hip_without_compile`. Refactored JIT kernel adapters to accommodate host and device modules, improving overall integration and flexibility. * lint fix * Add support for C target in device code generation - Updated `device_codegen_without_compile` to include handling for the C target by registering the `tilelang_cpp` function. * [Enhancement] Implement auto-clear cache feature based on environment variable * Added TILELANG_CLEAR_CACHE environment variable to control cache clearing. * Updated CI workflow to set TILELANG_CLEAR_CACHE during testing. * Modified cache initialization to clear cache if TILELANG_CLEAR_CACHE is set to true. * [Refactor] Update kernel invocation and import paths in tests and cache * Changed kernel invocation in `test_tilelang_kernel_dequantize_gemm.py` to return the result. * Updated import statements in `test_tilelang_kernel_int4_gemm_mma.py` to use `bitblas` instead of `tilelang`. * Refactored paths for artifact and parameters in `kernel_cache.py` for better maintainability. * [Refactor] Clean up whitespace and improve code formatting in kernel_cache.py * Removed unnecessary blank lines and adjusted spacing for better readability in the KernelCache class. * Enhanced overall code formatting to align with project standards. * [Enhancement] Add bfloat16 test case and improve kernel caching logic * Introduced a new test case for bfloat16 matrix multiplication in `test_tilelang_kernel_gemm_mma_intrinsic.py`. * Updated `KernelCache` to handle multiple kernel source files and improve error handling during saving and loading. * Refactored `JITKernel` to support instantiation from a database, enhancing flexibility in kernel management. * Adjusted `CtypesKernelAdapter` and `CythonKernelAdapter` to utilize the new kernel loading mechanism from the database. * Improved code formatting and readability across several files. * lint fix * Update bfloat16 matrix multiplication test case to use larger dimensions for improved coverage
-
- 13 Mar, 2025 1 commit
-
-
zqh-wz authored
* upgrade cutlass to upstream v3.8.0 * Implement fp8 gemm and add example script * Fix dtype retrieval with map_torch_type for fp8 inputs * Disable vectorization of fp8 values * Make MMA declaration compatible with cutlass 3.4.0+ * Add test for fp8 T.gemm * fix indent * fix indent * Add copyright and license header * Add copyright and license header * lint fix * Refactor matmul_nt and assert_matmul_correctness functions for improved readability by consolidating parameter definitions and adjusting formatting. * clang format lint --------- Co-authored-by:
Lei Wang <34334180+LeiWang1999@users.noreply.github.com> Co-authored-by:
LeiWang1999 <leiwang1999@outlook.com>
-
- 06 Feb, 2025 1 commit
-
-
Lei Wang authored
* [Enhancement] Add VectorizeLoop function and update imports for compatibility * [CI][Test] Improve test cases for vectorization and fix typos in parser comments * lint fix * Fix incorrect module reference for VectorizeLoop transformation * Refactor vectorize_loop transformation by removing unused extent mutation logic * [Enhancement] Add support for FP8 data types and global barriers in CUDA codegen * Fix formatting in CUDA FP8 header file for consistency * Refactor CI workflow to use 'tilelang_ci' virtual environment and update CUDA type printing for better clarity * Update submodule 'tvm' to latest commit for improved functionality * Refactor execution backend references from 'dl_pack' to 'dlpack' for consistency and clarity; add apply_simplify function to simplify PrimFunc or IRModule. * Refactor CUDA code for improved readability; clean up formatting and remove unnecessary whitespace in multiple files. * Refactor import statement in test_tilelang_kernel_dequantize_gemm.py to use 'tilelang.language' for consistency * Add CUDA requirements to FP8 test cases and update references for clarity * Add a blank line for improved readability in test_tilelang_kernel_fp8_gemm_mma.py * Fix data type in reference result calculation for consistency in test_tilelang_kernel_gemm_mma_intrinsic.py * Add CUDA requirements and FP8 test cases for matmul and gemv simulations * Remove debug print statements and use tilelang's testing assertion for result validation in test_tilelang_kernel_gemm_mma_intrinsic.py * Remove outdated comment regarding FP8 tests in test_tilelang_kernel_gemv_simt.py
-