1. 02 Nov, 2025 1 commit
    • Lei Wang's avatar
      [Language] Expose `T.warpgroup_fence_operand` for nvcc code motion (#986) · aef0a6bb
      Lei Wang authored
      
      
      * remove debug print
      
      * pipeline fix
      
      * use the correct buffer access scope
      
      * rs support
      
      * warp warpgroup_fence_operand
      
      * fix
      
      * fp8 dtype ptx enhance
      
      * mma fix
      
      * TCGEN05 Interface
      
      * tcgen05 support
      
      * rebase
      
      * update
      
      * Enhance TCGEN05 support by adding new intrinsic operations and descriptors. Introduced `ptx_tcgen05_mma_ts` for tensor-memory to shared-memory instructions and `tcgen05_mma_arrive` for signaling barrier completion. Updated existing descriptors and code generation logic to accommodate these changes, ensuring compatibility with new instruction sets. Refactored related allocation functions and improved handling of shared memory descriptors.
      
      * lint fix
      
      * Refactor buffer reference handling in CUDA code generation and update test execution in tilelang. Ensure default annotations for unrolling are set correctly in TIR IR module.
      
      * wgmma fix
      
      ---------
      Co-authored-by: default avatarZhiwen Mo <zm125@ic.ac.uk>
      aef0a6bb
  2. 31 Oct, 2025 3 commits
    • Lei Wang's avatar
      [Bugfix] Support 16bits shfl_sync (#1169) · 54d4bd62
      Lei Wang authored
      * Add type-safe warp shuffle helpers for 16-bit float types in common.h
      
      - Introduced generic passthrough functions for warp shuffle operations: `shfl_xor_sync`, `shfl_down_sync`, `shfl_up_sync`, and `shfl_sync`.
      - Added specializations for `cutlass::half_t` and `cutlass::bfloat16_t` to ensure type safety during shuffle operations.
      - Updated `reduce.h` to utilize the new shuffle functions, enhancing code clarity and maintainability.
      
      * lint fix
      54d4bd62
    • Lei Wang's avatar
      [Bugfix] Enable code lowering with producer‑copy‑only program (#1168) · 7a80b6df
      Lei Wang authored
      * bugfix
      
      * lint fix
      
      * Enhance warp group register allocation to handle missing consumer bodies gracefully. Updated logic to annotate producer side when consumer is absent, ensuring robustness in degenerate warp-specialized patterns.
      
      * Refactor VisitExpr_ method in inject_tma_barrier.cc for improved readability. Adjusted formatting and spacing for clarity in barrier handling logic.
      
      * Update barrier handling in inject_tma_barrier.cc to accommodate newly appended entries. Adjusted the size of the replace vector to ensure it covers the full needed length, and modified the logic for appending barriers based on the updated replace conditions.
      7a80b6df
    • Lei Wang's avatar
      [FFI] Rebase tvm to v0.22.0 to utilize tvm-ffi (#1108) · 10911e28
      Lei Wang authored
      
      
      * 3rdparty tvm bump
      
      * bump tvm into v0.22.0
      
      * lint fix
      
      * rebase tvm
      
      * Update submodule tvm to latest commit 3085bc4
      
      * Refactor: Update configuration retrieval in CopyNode and adjust test registration in tilelang
      
      * test fix
      
      * add requirement
      
      * atomic_fix
      
      * atomic_fix
      
      * phaseout py39
      
      * optimize
      
      * optimize
      
      * lint fix
      
      * do not clean cache
      
      * do not clean cache
      
      * [Minor] Minor update for Python versions and dependencies
      
      * [Lint] fix lint for py39
      
      * [Lint] fix lint for ROCm
      
      * [Build][CI] Sync CI changes from upstream/sdist
      
      * [Lint] fix lint for ROCm
      
      * [Build][CI] Update `repair-wheel-command`
      
      * [Minor] update abi3audit result format
      
      * [Lint] fix lint for ROCm
      
      * [BugFix] fix build
      
      * [Lint] fix lint for ROCm
      
      * [BugFix] set rpath for libtvm and libtvm_runtime
      
      * [Deps] pin apache-tvm-ffi version
      
      * [Build] set Python 3.9 Limited API for Cython target
      
      * [Build] set Python 3.9 Limited API for Cython target
      
      * [Deps] Restore Python 3.8 support
      
      * [Build] use `apache-tvm-ffi`'s `libtvm_ffi`
      
      * [BugFix] use `;` as delimiter for RPATH on macOS
      
      * [BugFix] use `--ignore-missing-dependencies` for `delocate-wheel`
      
      * [Build] support `sccache` if available
      
      * [Build] add CIBW import test
      
      * [Build][CI] enable ccache for CIBW on Linux
      
      * [BugFix] set rpath for libtvm and libtvm_runtime
      
      * Revert "[Build][CI] enable ccache for CIBW on Linux"
      
      This reverts commit cd9ab57bb5ddd2572c60bcbbebde81480a658fd3.
      
      * [CI] fix perfbench bot
      
      * [BugFix] use Python 3.9 to build wheel
      
      * [Minor] update perfbench bot envs
      
      * [BugFix] fix CIBW environment on Linux
      
      * [CI] skip import test on CentOS 7
      
      * [CI] use Python urllib to download file instead of Wget
      
      ---------
      Co-authored-by: default avatarXuehai Pan <XuehaiPan@pku.edu.cn>
      10911e28
  3. 29 Oct, 2025 4 commits
  4. 28 Oct, 2025 2 commits
  5. 27 Oct, 2025 4 commits
  6. 25 Oct, 2025 1 commit
  7. 24 Oct, 2025 1 commit
  8. 23 Oct, 2025 2 commits
    • Tong WU's avatar
      [Feature] Enhance vectorized conversion support in CUDA codegen (#1095) · a148d62a
      Tong WU authored
      * [Feature] Add vectorized float16 and float32 conversion support in CUDA codegen
      
      * Implemented handling for conversions between float16 and float32 types, specifically for vectorized operations using __half22float2 and __float22half2_rn.
      * Enhanced the existing code to support both directions of conversion based on the lane count.
      * Improved overall type handling in the VisitExpr_ method for better compatibility with TileLang.
      
      * [Feature] Add float32 to float8 conversion support in CUDA codegen
      
      * Implemented handling for conversion from float32 to float8 (E4M3/E5M2) in the VisitExpr_ method.
      * Added vectorized conversion support using __nv_cvt_float2_to_fp8x2 for float2 to fp8x2 transformations.
      * Enhanced type handling for better compatibility with TileLang, particularly for float8 types.
      
      * lint
      
      * fix a bug
      
      * [Enhancement] Support lanes=4 cases and add unit test for vectorized cast
      
      * lint
      
      * [Feature] Refactor bf16 convertion operations and remove legacy compile flags
      
      * lint
      a148d62a
    • Lei Wang's avatar
      [Refactor] Improve scalar handling in CopyNode and update loop partition dtype logi (#1111) · 86c8bb46
      Lei Wang authored
      * [Refactor] Improve scalar handling in CopyNode and update loop partition dtype logic
      
      * Refactored CopyNode::MakeSIMTLoop to handle scalar cases more efficiently by moving the scalar check to the end of the function.
      * Updated loop_partition.cc to set a default DataType for thread and vector extents, ensuring compatibility when loop_vars_ is empty.
      
      * lint fix
      
      * remove debug print
      86c8bb46
  9. 22 Oct, 2025 3 commits
  10. 21 Oct, 2025 4 commits
  11. 20 Oct, 2025 6 commits
  12. 17 Oct, 2025 2 commits
  13. 16 Oct, 2025 2 commits
  14. 15 Oct, 2025 5 commits
    • Yu Cheng's avatar
    • alex_xiao's avatar
      fix bug&add amd examples (#966) · 80665cd1
      alex_xiao authored
      
      
      * [Enhancement] Refactor buffer index handling for improved precision and clarity (#668)
      
      - Enhanced buffer index handling to address precision issues by removing redundant operations.
      - Streamlined the logic for determining buffer overlaps, ensuring more accurate conflict detection.
      - Updated related documentation to reflect changes in buffer management practices.
      
      * Remove obsolete test script for AMD example, streamlining the examples directory.
      
      * Remove unused dtype_size variable in AMD example script to streamline code.
      
      * Add input configuration file and update AMD example script for enhanced flexibility
      
      - Introduced a new input.txt file for configurable parameters.
      - Modified the example_amd_flash_attn_fwd.py script to allow for a wider range of configurations, including additional options for num_stages, enable_rasterization, and k_pack.
      - Streamlined the main function for better clarity and organization.
      - Added a new test script to facilitate running the example with specified parameters.
      
      * Remove input configuration file and obsolete test script; enhance AMD example with swizzle layout annotations
      
      - Deleted input.txt and test.sh files as they are no longer needed.
      - Updated example_amd_flash_attn_fwd.py to include swizzle layout annotations for shared memory, improving bank conflict avoidance.
      - Reintroduced swizzle usage in the kernel for better performance.
      
      * Refactor AMD example script for FlashAttention-2
      
      - Updated function names for clarity, changing `get_v2_configs` to `get_configs` and `fast_flashattn_v2` to `fast_flashattn`.
      - Streamlined the main function by renaming `main_v2` to `main` and adjusting the corresponding calls.
      - Removed outdated comments and improved code organization for better readability.
      
      * Refactor formatting in AMD FlashAttention example script
      
      - Improved code readability by adjusting line breaks and indentation in the `fast_flashattn` function.
      - Streamlined the `main` function parameter formatting for consistency.
      - Removed unnecessary blank lines to enhance overall code organization.
      
      * Update example_amd_flash_attn_fwd.py
      
      * Enhance AMD example script and update CI workflows
      
      - Improved the `example_amd_flash_attn_fwd.py` script for better clarity and organization.
      - Added new CI workflows for AMD and documentation publishing.
      - Updated various requirements files to include necessary dependencies.
      - Introduced new test cases and examples for better coverage and functionality.
      - Refactored existing code for improved readability and maintainability.
      
      * Remove redundant tool cache cleanup step in AMD CI workflow
      
      * Remove `torch` dependency from `requirements-rocm.txt` to streamline requirements.
      
      * Add new AMD FlashAttention example and test script
      
      - Introduced `example_amd_flash_attn_bwd.py` for backward attention computation using TileLang.
      - Added `test.sh` script to facilitate running the new example with specified parameters.
      - Enhanced the overall structure and organization of the example for better clarity and usability.
      
      * Update configurations in `example_amd_flash_attn_fwd.py` for autotuner
      
      - Reduced the number of threads and `num_split_q` options for improved performance.
      - Adjusted `panel_size` options to streamline configuration settings.
      
      * Update submodule 'tvm' to commit 6ccc74f622c7ec4ac25d430d0f6546e7b9edb217
      
      * Update submodule 'tvm' to commit 14ff70ab142b9e5a31bbf9c7923c8a697d41e86c
      
      * Add example for AMD Flash Attention backward pass implementation
      
      - Introduced a new example script `example_amd_flash_attn_bwd.py` demonstrating the forward and backward operations of Flash Attention using TileLang.
      - Implemented JIT-compiled functions for both forward and backward passes, including preprocessing and postprocessing steps.
      - Added a main function to facilitate testing and benchmarking of the attention mechanism with configurable parameters.
      - Included reference implementation for validation against PyTorch's attention mechanism.
      
      This addition enhances the examples directory by providing a comprehensive guide for users to understand and utilize Flash Attention in their applications.
      
      * Enhance AMD Flash Attention example with additional testing capabilities
      
      - Updated `example_amd_flash_attn_bwd.py` to include more comprehensive testing features for the Flash Attention implementation.
      - Improved the main function to allow for better parameter configuration and benchmarking.
      - Added validation checks against PyTorch's attention mechanism to ensure accuracy and reliability of the example.
      
      This update aims to provide users with a more robust tool for understanding and utilizing Flash Attention in their applications.
      
      * Update submodule TVM to commit a64a5926a6e59f5417ef2501f9d88b467337cf6a
      
      * Refactor HIP intrinsic rules to CUDA
      
      - Updated file name from `intrin_rule_hip.cc` to `intrin_rule_cuda.cc` to reflect the change in focus from HIP to CUDA intrinsic rules.
      - Adjusted include paths for better organization and clarity in the code structure.
      
      * Update AMD CI workflow to uninstall specific PyTorch packages before installation
      
      - Removed the installation of `flash_attn==2.5.8` to streamline the CI process.
      - Added a step to uninstall `torch`, `torchvision`, and `torchaudio` prior to installing pre-release versions, ensuring compatibility and reducing potential conflicts.
      
      * Remove unused shared memory allocations in AMD Flash Attention backward example
      
      - Eliminated the allocation of shared memory for `dv_shared` and `dk_shared` in `example_amd_flash_attn_bwd.py` to streamline memory usage and improve performance.
      - This change focuses on optimizing the backward pass implementation by reducing unnecessary memory overhead.
      
      * Remove unnecessary pip uninstall command from AMD CI workflow
      
      - Eliminated the step to uninstall `torch`, `torchvision`, and `torchaudio` in the AMD CI workflow, as it is no longer required for the installation of pre-release versions.
      - This change simplifies the CI process and reduces potential overhead during package management.
      
      * Refactor DispatchHIPWarpActiveMask function in HIP intrinsic rules
      
      - Updated the return statement to use std::string for concatenation in the case of 16-bit types, improving code clarity.
      - Added a null check for the CallNode pointer in DispatchHIPWarpActiveMask to enhance robustness and prevent potential dereferencing issues.
      
      * Refactor formatting of HIP intrinsic rule registrations
      
      - Adjusted the formatting of TVM_REGISTER_OP calls for better readability by aligning method chaining.
      - No functional changes were made; this update focuses on code style improvements to enhance maintainability.
      
      * Update file name and documentation for HIP intrinsic rules
      
      - Renamed the file from `intrin_rule_cuda.cc` to `intrin_rule_hip.cc` to accurately reflect the focus on HIP intrinsic rules.
      - Updated the file documentation to clarify its purpose as related to HIP rather than CUDA.
      
      * Enhance DispatchHIPShuffle function with clang-analyzer comments
      
      - Added NOLINTBEGIN and NOLINTEND comments to the DispatchHIPShuffle function to suppress clang-analyzer warnings related to inner pointer usage.
      - This change improves code clarity and maintains compliance with static analysis tools.
      
      * lint fix
      
      * fix
      
      * Enhance autotuner configurations in example_amd_flash_attn_fwd.py by adding new block sizes, stages, and panel sizes. Update test script to use relative Python path and adjust parameters for consistency.
      
      * Add backward attention example to test script
      
      - Extended the test.sh script to include a new backward attention example using example_amd_flash_attn_bwd.py.
      - Added parameters for batch size, context length, and head dimensions to ensure consistency with the forward example.
      - Updated the command for the backward tile example to match the new configuration.
      
      * Refactor FlashAttention implementation in example_amd_flash_attn_bwd.py and example_amd_flash_attn_fwd.py
      
      - Introduced new functions for forward and backward configurations to enhance autotuning capabilities.
      - Updated the FlashAttention forward and backward functions to improve performance and maintainability.
      - Adjusted test script parameters for consistency and clarity, including the addition of group handling.
      - Enhanced the autotuner configurations by refining block sizes and stages for better performance tuning.
      - Updated the main function to reflect changes in parameter names and types for better usability.
      
      * Enhance FlashAttention backward implementation in example_amd_flash_attn_bwd.py
      
      - Updated the backward function to return additional outputs, including log-sum-exp (LSE) values for improved gradient calculations.
      - Refined autotuner configurations by adding new block sizes and adjusting parameters for better performance tuning.
      - Improved shared memory usage in the backward pass to optimize memory access patterns and enhance computational efficiency.
      - Updated the main function to reflect changes in parameter handling and ensure consistency with the forward pass.
      - Enhanced correctness checks in the main function to include LSE validation alongside gradient checks.
      
      * Enhance FlashAttention backward implementation in example_amd_flash_attn_bwd.py
      
      - Introduced a scaling factor for improved numerical stability in gradient calculations.
      - Optimized shared memory usage by adding new shared buffers for intermediate calculations.
      - Refined the handling of tensor fragments to improve performance and maintainability.
      - Updated the main function to ensure compatibility with the new output parameters for backward operations.
      - Removed unnecessary parameters from the test script to streamline execution.
      
      * Refactor FlashAttention implementation in example_amd_flash_attn_bwd.py and example_mha_bwd.py
      
      - Updated the forward and backward functions to improve numerical stability and performance.
      - Enhanced shared memory usage by optimizing buffer allocations and reducing unnecessary parameters.
      - Adjusted autotuner configurations for better performance tuning and compatibility with new output parameters.
      - Added debugging and benchmarking functions for improved correctness verification and performance analysis.
      - Updated the main function to reflect changes in parameter handling and ensure consistency across examples.
      
      * Enhance FlashAttention backward implementation in example_amd_flash_attn_bwd.py
      
      - Updated scaling factor application for improved numerical stability in gradient calculations.
      - Refined tensor handling to ensure consistency with forward pass operations.
      - Optimized atomic operations for writing gradients to dK and dV using fp32 for better precision.
      - Adjusted comments for clarity and alignment with standard implementation practices.
      
      * Expand autotuner configurations in example_amd_flash_attn_bwd.py and update test.sh
      
      - Increased the range of block sizes and stages for forward and backward configurations to enhance performance tuning.
      - Adjusted the test script to include additional parameters for batch size and head dimensions, ensuring consistency with the forward example.
      - Improved comments for clarity and alignment with the updated configurations.
      
      * Enhance performance calculations and benchmarking in example_amd_flash_attn_bwd.py
      
      - Updated FLOPs calculation to account for both forward and backward passes, clarifying the total computational cost.
      - Modified benchmarking functions to evaluate the complete forward and backward performance of both reference and Tile-lang implementations.
      - Improved comments for better understanding of the performance metrics and implementation details.
      - Removed unnecessary parameter from test.sh to streamline execution.
      
      * Remove forward attention test commands from test.sh and retain backward attention execution for streamlined testing.
      
      * Refactor FlashAttention forward and backward implementations in example_amd_flash_attn_bwd.py and example_amd_flash_attn_fwd.py
      
      - Updated the forward function to return both output and log-sum-exp (LSE) values for improved gradient calculations.
      - Enhanced autotuner configurations for forward pass, including new parameters for better performance tuning.
      - Refined scaling factor calculations for numerical stability in both forward and backward passes.
      - Improved comments and documentation for clarity and consistency across implementations.
      - Adjusted main function to reflect changes in parameter handling and ensure compatibility with new output requirements.
      
      * Refactor FlashAttention implementation in example_amd_flash_attn_bwd.py
      
      - Removed outdated comments and improved clarity in the code.
      - Enhanced the forward function to consistently return output and log-sum-exp (LSE) values.
      - Updated autotuner configurations to include new parameters for better performance tuning.
      - Refined tensor handling and scaling factor calculations for improved numerical stability.
      - Adjusted the main function to ensure compatibility with updated output requirements and parameter handling.
      
      * Enhance FlashAttention backward implementation in example_amd_flash_attn_bwd.py
      
      - Updated configuration parameters for backward calculations, including new options for block sizes, threads, and rasterization.
      - Added new parameters (k_pack, qk_coalesced_width, v_coalesced_width) to improve performance tuning and memory access patterns.
      - Modified tensor copy operations to utilize coalesced widths for optimized memory loads.
      - Enhanced GEMM operations with k_pack for improved computational efficiency.
      - Refined the configuration generation logic to accommodate the new parameters, ensuring comprehensive coverage for backward pass scenarios.
      
      * Refactor configuration and tensor operations in example_amd_flash_attn_bwd.py
      
      - Updated backward configuration parameters to include larger block sizes and a wider range of threads for enhanced performance tuning.
      - Removed unnecessary parameters (k_pack, qk_coalesced_width, v_coalesced_width) from function signatures and tensor operations to simplify the implementation.
      - Optimized tensor copy operations by eliminating coalesced width specifications, streamlining memory access patterns.
      - Adjusted GEMM operations to improve computational efficiency without the use of k_pack.
      
      * Enhance HIP code generation and FP8 type support
      
      - Added support for additional FP8 types (e4m3, e4m3b11fnuz, e5m2fnuz, e8m0) in codegen_hip.cc to improve compatibility.
      - Updated error logging to include unsupported FP8 type details for better debugging.
      - Implemented handling for loop break and no-op register management in HIP within VisitExpr_ method.
      - Introduced new FP8 vector types (e5 and e8) in hip_fp8.h for enhanced functionality.
      - Added overloads for AtomicAdd in common.h to support both pointer and value arguments.
      
      * Enhance FP8 type support and clarify accumulator handling in HIP
      
      - Expanded FP8 type support in codegen_hip.cc to include additional float8 formats.
      - Updated gemm.h to clarify the handling of the accumulator when clear_accum is true.
      - Added comments in hip_fp8.h to indicate that E8M0 types are not supported in the current HIP version.
      
      * Remove deprecated files and update print statements for clarity in example_amd_flash_attn_bwd.py
      
      * Update print statement formatting for clarity in example_amd_flash_attn_bwd.py
      
      * Remove redundant verification results summary print statement in example_amd_flash_attn_bwd.py for cleaner output.
      
      * Fix formatting inconsistencies in example_amd_flash_attn_bwd.py and example_amd_flash_attn_fwd.py by adding spaces for improved readability in configuration parameters and print statements.
      
      * Refactor and enhance HIP code generation for improved FP8 support
      
      - Reorganized and cleaned up code in codegen_hip.cc for better readability and maintainability.
      - Enhanced handling of FP8 types, including additional formats and improved error logging for unsupported types.
      - Updated AtomicAdd function in common.h to streamline its implementation.
      - Refined the PrintVecElemLoadExpr method to handle volatile loads more effectively.
      - Added function to manage the addition of new functions in the code generation process.
      
      * Fix formatting issue in HIP code generation for MFMA call
      
      - Adjusted the indentation of the MFMA call code block in codegen_hip.cc for improved readability and consistency.
      
      * Refactor HIP code generation and enhance FP8 type handling
      
      - Reintroduced necessary includes and reorganized code in codegen_hip.cc for improved structure and readability.
      - Enhanced the GetFP8Type function to support additional FP8 formats and improved error handling for unsupported types.
      - Updated PrintType and PrintVecElemLoadExpr methods to better manage type conversions and vector element loading.
      - Refined the AddFunction method to streamline function addition in the code generation process.
      
      * Remove unnecessary blank line in example_amd_flash_attn_bwd.py for improved code cleanliness.
      
      * Refactor backward attention implementation in example_amd_flash_attn_bwd.py
      
      - Updated the GEMM operation to use shared memory for improved performance.
      - Adjusted parallelization parameters to enhance efficiency in the backward pass.
      
      * Fix formatting by removing an unnecessary blank line in example_amd_flash_attn_bwd.py for improved code cleanliness.
      
      * Add additional test cases for `assert_tl_matmul_correctness` with `float8_e4m3fnuz` and various configurations
      
      * Refactor test case formatting for `assert_tl_matmul_correctness` in `test_tilelang_gemm_mfma_intrinsic.py`
      
      ---------
      Co-authored-by: default avatarxinxyxiao <xinyxiao@amd.com>
      Co-authored-by: default avatarLei Wang <34334180+LeiWang1999@users.noreply.github.com>
      Co-authored-by: default avatarLeiWang1999 <leiwang1999@outlook.com>
      80665cd1
    • Lei Wang's avatar
      [Language] Expose `T.get_warp_idx_sync` and `T.shuffle_elect` for efficient thread election (#989) · b78d8404
      Lei Wang authored
      
      
      * Expose CUDA warp/lane intrinsics in TileLang frontend
      
      * generalize warp indexing intrinsics and add coverage
      
      * [Lint]: [pre-commit.ci] auto fixes [...]
      
      ---------
      Co-authored-by: default avatarpre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
      b78d8404
    • LJC00118's avatar
      [CUDA] Add pack functions for FP8 types (#967) · 32ddc1ac
      LJC00118 authored
      * Remove an incorrect check
      
      * add fp8 pack function
      
      * code lint
      
      * minor fix
      
      * minor fix
      
      * minor fix
      
      * Minor fix
      
      * Minor fix
      32ddc1ac
    • Lei Wang's avatar
      [TIR] Revert some changes of Pass `LowerIntrin` (#1035) · e5399527
      Lei Wang authored
      
      
      * keep >> instead of /
      
      * re think replicate
      
      * lint fix
      
      * handle const int buffers
      
      * rep fix
      
      ---------
      Co-authored-by: default avatarZhiwen Mo <zm125@ic.ac.uk>
      e5399527